The following are the technical updates applicable to the Nov 2009 revision of Concrete Buildings Scheme Design Manual.

Location	Original	Amendment
Page 46, section 3.6	3. $310 / \sigma_{5}$, where $\sigma_{5}=$ tensile steel stress at mid-span (or support for cantilevers) under the design load at SLS. The stress in the steel at SLS can be estimated from Figure 3.3. This assumes that the area of steel has not been enharced to control deflection and the stress can be further reduced by $A_{\text {s.req }} / A_{\text {sprow }}$ when this is the case ($\left.A_{\text {s.erq }} \leq 1.5 \mathrm{~A}_{\text {sproc }}\right)$.	3. $A_{\mathrm{s}, \text { prov }} / A_{\mathrm{s}, \text { req'd }} \leq 1.5$ (UK National Annex)
Page 47, Figure 3.3		This is figure is no longer required (but it may be useful)
Page 60, top of page	Insert new text	At the basic control perimeter check $v_{\text {Ed }} \leq$ $2 v_{\mathrm{Rd}, \mathrm{c}}$
Page 29, Figure 6, box 5 .	Determine Factor 3 (F3) $\mathrm{F} 3=310 / \sigma_{\mathrm{s}}$ Where $\sigma_{\mathrm{s}}=$ Stress in reinforcement at serviceability limit state (see Figure 4) σ_{s} may be assumed to be 310 MPa (i.e. $\mathrm{F} 3=1.0$) Note: As, prov $\leq 1.5 \mathrm{As}$, req'd (UK National Annex)	$\begin{aligned} & \text { Determine Factor } 3 \text { (F3) } \\ & \mathrm{F} 3=A_{\mathrm{s}, \text { prov }} / A_{\mathrm{s}, \text { req'd }} \leq 1.5 \text { (UK National Annex) } \end{aligned}$
Page 62, WE 4, punchin g shear	$\begin{aligned} & \text { Length of perimeter }=4 \times 350+2 \pi \times 500=4542 \mathrm{~mm} \\ & \text { Radial spacing } \operatorname{sr}=0.75 \times 250=188 \mathrm{~mm} \\ & A_{\text {sw }}=(\mathrm{VEd}-0.75 \mathrm{VRd}, \mathrm{c}) \mathrm{Sr} u 1 /\left(1.5 f_{\mathrm{ywd}, \mathrm{ef})}\right. \\ & \left.=\left(1.15 \times 1238 \times 10^{3} /(4542 \times 250)\right)-0.75 \times 0.75\right) \times 188 \times 4542 /(1.5 \\ & \times 313) \\ & =1257 \mathrm{~mm} / \text { perimeter } \end{aligned}$	$\begin{aligned} & \text { Length of perimeter }=4 \times 350+2 \pi \times 500=4542 \mathrm{~mm} \\ & V_{\text {Ed }}=1.15 \times 1238 \times 10^{3} /(4542 \times 250)=1.25 \leq 2 \times \\ & 0.75 \therefore \mathrm{OK} \\ & \text { Radial spacing } \mathrm{Sr}=0.75 \times 250=188 \mathrm{~mm} \\ & A_{\mathrm{sw}}=(\mathrm{VEd}-0.75 \mathrm{VRd,c}) \text { Sr } u 1 /\left(1.5 f_{\mathrm{ywd}, \mathrm{ef})}\right. \\ & =(1.25-0.75 \times 0.75) \times 188 \times 4542 /(1.5 \times 313) \\ & =1257 \mathrm{~mm} 2 / \text { perimeter } \\ & = \end{aligned}$
Page 63, WE 4, deflecti on	Increase area of steel to reduce steel stress, assume H20 @ 225 ctrs (1400 mm 2) Approximate steel stress at SLS $=236 \mathrm{MPa}$ Therefore approximate steel stress, $\sigma \mathrm{s}$, when $A \mathrm{~s}$, prov $=1400 \mathrm{~mm} 2$ $\sigma_{s}=236 \times 1243 / 1400=210 \mathrm{MPa}$ Increased basic $l / d=24.4 \times 310 / 210=36>34.6 \therefore$ OK \therefore Use H2O @ 225 ctrs As, prov $=1400 \mathrm{~mm} 2$	Increase area of steel to reduce steel stress: $A s$, prov $=A s$, req $\mathrm{X}($ actual $/ / d) /($ basic $/ / d)$ $=1243 \times 34.6 / 24.4=1763 \mathrm{~mm}^{2}$ \therefore Use H2O @ 175 ctrs As,prov $=1800 \mathrm{~mm} 2$

