

She	ear -	- V _{Rd}	,c				Con	cise Ta	able 7.	pa The Concr 1 or 1	ete Centre 5.6
v _{Rd,c} res	istance	of mem	bers wi	ithout s	hear rei	inforcer	nent, M	Pa			
<u>A</u> s				E	ffective	e depth	, <i>d</i> (mm)			
(b d) %	≤200	225	250	275	300	350	400	450	500	600	750
0.25	0.54	0.52	0.50	0.48	0.47	0.45	0.43	0.41	0.40	0.38	0.36
0.50	9.59	0.57	0.56	0.55	0.54	0.52	0.51	0.49	0.48	0.47	0.45
0.75	0.68	0.66	0.64	0.63	0.62	0.59	0.58	0.56	0.55	0.53	0.51
1.00	0.75	0.72	0.71	0.69	0.68	0.65	0.64	0.62	0.61	0.59	0.57
1.25	0.80	0.78	0.76	0.74	0.73	0.71	0.69	0.67	0.66	0.63	0.61
1.50	0.85	0.83	0.81	0.79	0.78	0.75	0.73	0.71	0.70	0.67	0.65
1.75	0.90	0.87	0.85	0.83	0.82	0.79	0.77	0.75	0.73	0.71	0.68
2.00	0.94	0.91	0.89	0.87	0.85	0.82	0.80	0.78	0.77	0.74	0.71
k	2.00	1.94	1.89	1.85	1.82	1.76	1.71	1.67	1.63	1.58	1.52
Table deriv Note: This	ed from: v _R table has b	_{d,c} = 0.12 k een prepare	$(100\rho f_{ck})^{(1)}$ ed for $f_{ck} = 3$	⁽³⁾ ≥ 0.035 <i>k</i> 30. Where	$^{1.5} f_{ck}^{0.5}$ where ρ_{l} exceeds (ere k = 1 + J 0.40% the fo	(200/d) ≤ 2 ollowing fac	and $\rho_1 = A_s$ tors may be	/(<i>bd</i>) ≤ 0.02 used:	2	
f _{ck}	25	28	3Z	35	40	45	50				
factor	0.94	0.98	1.02	1.05	1.10	1.14	1.19				

Solution

3. Perimeter at which punching shear no longer required $u_{out} = \beta V_{Ed}/(dv_{Rd,c})$ $= 1.15 \times 1204.8 \times 1000/(250 \times 0.61)$ = 9085 mmRearrange: $u_{out} = 2(c_x + c_y) + 2\pi r_{out}$ $r_{out} = (u_{out} - 2(c_x + c_y))/(2\pi)$ $= (9085 - 1600)/(2\pi) = 1191 \text{ mm}$ Position of outer perimeter of reinforcement from column face: $r = 1191 - 1.5 \times 250 = 816 \text{ mm}$ Maximum radial spacing of reinforcement: $s_{r,max} = 0.75 \times 250 = 187 \text{ mm}$, say 175 mm

Analysis		The Concrete Centre
Actions:		
$g_k = 0.30 \times 25 + 1.0 = 8.5 \text{ kN/m}^2$ $q_k = 4.0 \text{ kN/m}^2$		
n = 1.25 x 8.5 + 1.5 x 4.0	= 16.6 kN/m ²	NB. Exp(6.10b) used!
Analysis: using coefficients from (Adjacent spans are 9.6 and 8.6 m. 8.6/ using coefficients is appropriate.) Effective span = 9.6 - 2 x 0.4 + 2	Concise Table 1 9.6 = 0.89: i.e. > 85 2 x 0.3/2 = 9.5 n	5.3: % so n
In panel: sagging moment,		
$M_{Ed} = (1.25 \times 8.5 \times 0.09 + 1.5 \times 4)$	4 x0.100) x 6.0 x	< 9.5 ² = 842.7 kNm
Along support 2: hogging momer	nt	
$M_{Ed} = 16.6 \times 0.106 \times 6.0 \times 9.5^2$		= 952.8 kNm
↑		
See Note to Concise	Table 15.3 for suppo	rt of 2-span slab

		The Concrete
Location	Negative moments	Positive moments
Column strip	60% – 80%	50% – 70%
Middle strip	40% - 20%	50% – 30%
The total negative always add up to The distribution o strip: hogging 259	and positive moments to be resisted by the contract of the con	olumn and middle strips together should rip: hogging 75%, sagging 55%; middle
The total negative always add up to The distribution o strip: hogging 259	and positive moments to be resisted by the contract of the second	olumn and middle strips together should rip: hogging 75%, sagging 55%; middle
The total negative always add up to The distribution o strip: hogging 259	and positive moments to be resisted by the of 100% f design moments given in BS 8110 (column st 6, sagging 45%) may be used MEd Column strip	olumn and middle strips together should rip: hogging 75%, sagging 55%; middle Middle strip

