

Albion Wharf, Albion Street, Manchester, M1 5LN

tet 0161 923 4844 fax 0161 923 4833 email info@solacoustics.co.uk

Concrete Centre Limited The Frame Residential Development, Sport City, Manchester P0818-REP01-IE Sound Insulation Test Report 2 August 2005

PROJECT:	The Frame Residential Development,
	Sportcity, Manchester
CLIENT:	Concrete Centre Limited
	Riverside House
	4 Meadows Business Park
	Station Approach
	Camberley
	Surrey
	GU17 9AB
DOCUMENT REFERENCE:	P0818-REP01-IE
SIGNED:	
	IAN ETCHELLS
CHECKED:	
	SIMON WEBSTER
DATE:	2 August 2005

THE FRAME RESIDENTIAL DEVELOPMENT, SPORTCITY, MANCHESTER - THE CONCRETE CENTRE LTD

SOUND INSULATION TEST REPORT

P0818-REP01-IE

CONTENTS

1.0	INTRODUCTION	2
2.0	BUILDING REGULATIONS SOUND INSULATION REQUIREMENTS	2
3.0	TEST PROCEDURE AND ANALYSIS	3
4.0	DESCRIPTION OF TESTED CONSTRUCTIONS	5
5.0	TEST RESULTS	6
6.0	DISCUSSION	7
APPEN	IDIX A: GLOSSARY OF ACOUSTIC TERMS	10
APPEN	IDIX B: TEST DETAILS	11
APPEN	IDIX C: CALCULATION OF WEIGHTED STANDARDISED LEVEL DIFFERENCE	12
APPEN	IDIX D: CALCULATION OF WEIGHTED STANDARDISED IMPACT LEVEL	13
APPEN	IDIX E: TEST CERTIFICATES	14
Figure 2	1: First floor layout of The Frame showing location of tested walls and floors	8
Figure 2	2: Separating wall and floor constructions between adjacent dwellings at The Frame,	Sportcity,
	Manchester	9

P0818-REP01-IE

1.0 INTRODUCTION

Sol Acoustics has been commissioned by The Concrete Centre to measure the airborne and impact sound insulation between dwellings at The Frame Residential Development, Sportcity, Manchester and compare the results with the performance standards cited by Building Regulations 2000 Approved Document E for purpose built dwellings.

Airborne Sound Insulation tests were conducted in accordance with BS EN ISO 140-4:1998 and rated in accordance with BS EN ISO 717-1: 1997. Impact Sound Insulation tests were conducted in accordance with BS EN ISO 140-7: 1998 and rated in accordance with BS EN ISO 717-2: 1997.

A glossary of acoustic terms used in this report is given in Appendix A.

2.0 BUILDING REGULATIONS SOUND INSULATION REQUIREMENTS

The Building Regulations 2000 Approved Document E: "Resistance to the passage of sound" gives airborne and impact sound insulation performance standards for purpose built dwelling-houses and flats. These Performance standards are given in Table 1 below.

	Airborne sound insulation D _{nT,w} + C _{tr} dB	Impact sound insulation L' _{nT,w} dB
Purpose Built Dwelling-houses and		
flats		
Walls	≥ 45	-
Floors and stairs	≥ 45	≤ 62

 Table 1:
 Building Regulations 2000 Approved Document E: Purpose built Dwelling-houses and flats

 performance standards for separating walls, separating floors, and stairs that have a separating function.

3.0 TEST PROCEDURE AND ANALYSIS

Airborne Sound Insulation

To conduct airborne sound insulation tests, a noise source is placed in the "source room" and the resultant noise level in this room is measured. The room on the other side of the party construction is the "receiver room" and the noise transmitted to this room is measured. The difference between source and receiver noise levels is then measured in accordance with BS EN ISO 140-4: "Field Measurements of airborne sound insulation between rooms". The resulting frequency-dependent level differences are converted into a single number characterising the acoustical performance using the method given in BS EN ISO 717-1: "Method for rating the airborne sound insulation in buildings and of interior building elements". This single number rating is the 'Weighted Standardised Level Difference' (D_{nT,W}).

Impact Sound Insulation

To conduct impact sound insulation tests, a tapping machine is placed on the floor in the "source room". The room directly below the floor is the "receiver room". The noise level generated in the receiver room is measured in accordance with BS EN ISO 140-7: "Field Measurements of impact sound insulation of floors". The resulting frequency-dependent noise levels are converted into a single number characterising the acoustical performance using the method given in BS EN ISO 717-2: "Method for rating the impact sound insulation". This single number rating is the 'Standardised Impact Sound Pressure Level' (L'_{nT,w}). It should be noted that a decrease in L'_{nT,w} indicates an improvement in acoustic performance.

Details of the tests are given in Appendix B. Appendices C and D summarise the calculation and rating methods for airborne and impact sound insulation tests respectively.

Sound insulation tests were conducted between the following pairs of rooms at The Frame, development:

Separating Floors – Impact Sound Insulation Tests

- 1. Apartment 9 kitchen/lounge to Apartment 2 kitchen/lounge
- 2. Apartment 12 bedroom 1 to Apartment 5 bedroom 1

Separating Floors – Airborne Sound Insulation Tests

- 1. Apartment 9 kitchen/lounge to Apartment 2 kitchen/lounge
- 2. Apartment 12 bedroom 1 to Apartment 5 bedroom 1

Separating Walls – Airborne Sound Insulation Tests

- 1. Apartment 9 kitchen/lounge to Apartment 8 bedroom 2
- 2. Apartment 12 bedroom 1 to Apartment 11 bedroom 2

P0818-REP01-IE

4.0 DESCRIPTION OF TESTED CONSTRUCTIONS

Separating walls are understood to be as follows:

- 150mm thick pre-cast reinforced concrete panel
- One face of the wall lined with a single layer of 12.5mm plasterboard (8.5kg/m²) on 38mm x 25mm battens
- Drylining applied to the other face of the wall comprising 2 layers of 12.5 mm thick plasterboard (8.5kg/m²) supported by Gyproc channel system with 70mm Isowool in cavity.

Separating floors are understood to be as follows:

- 200mm thick hollow-core pre-cast concrete slab
- 65mm (nominal) Isocrete Gyvlon screed laid on Regupol E48 resilient layer. Resilient layer returned around perimeter of screed.
- Suspended ceiling comprising 12.5mm thick plasterboard (8.5kg/m²) using Casoline MF metal channel support system.

Figure 2 illustrates the separating wall and floor constructions between adjacent dwellings.

External flanking walls are understood to have comprised:

- 150mm thick pre-cast reinforced concrete panel lined with 12.5mm plasterboard (8.5kg/m²) on Gyproc channel system.
- Combination of external timber and metal rain screen cladding systems.

5.0 TEST RESULTS

Table 2 compares the measured impact sound insulation performance of the separating floors against the target performance requirements cited by Building Regulations 2000.

Table 3 compares the measured airborne sound insulation performance of the separating floors against the target performance requirements cited by Building Regulations 2000.

Table 4 compares the measured airborne sound insulation performance of the separating walls against the target performance requirements cited by Building Regulations 2000.

Full test certificates for the measurements are given in Appendix E.

Test Description	Test Result	Performance Standard cited by Building Regulations 2000 Approved Document E	Pass or Fail?
Apartment 9 kitchen/lounge to Apartment 2 kitchen/lounge	49dB L' _{nT,w}	≤ 62dB L'n⊺,w	Pass
Apartment 12 bedroom 1 to Apartment 5 bedroom 1	50dB L' _{nT,w}	≤ 62dB L'nT,w	Pass

Table 2:Separating Floor Impact Sound Insulation Tests Results Compared With The Performance
Requirements Cited by Building Regulations 2000 Approved Document E

Test Description	Test Result	Performance Standard cited by Building Regulations 2000 Approved Document E	Pass or Fail?
Apartment 9 kitchen/lounge to Apartment 2 kitchen/lounge	50dB D _{nT,w} + C _{tr}	\geq 45dB D _{nT,w} +C _{tr}	Pass
Apartment 12 bedroom 1 to Apartment 5 bedroom 1	54dB D _{nT,w} + C _{tr}	\geq 45dB D _{nT,w} +C _{tr}	Pass

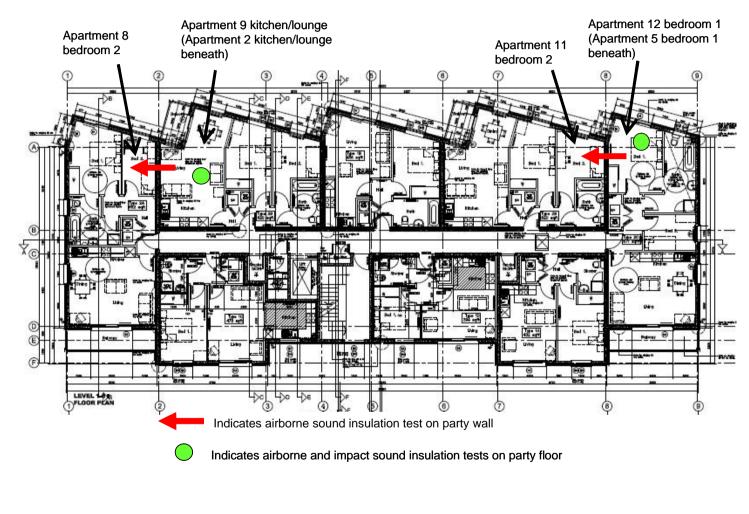
Table 3:Separating Floor Airborne Sound Insulation Tests Results Compared With The Performance
Requirements Cited by Building Regulations 2000 Approved Document E

Test Description	Test Result	Performance Standard cited by Building Regulations 2000 Approved Document E	Pass or Fail?
Apartment 9 kitchen/lounge to Apartment 8 bedroom 2	51dB D _{nT,w} + C _{tr}	\geq 45dB D _{nT,w} +C _{tr}	Pass
Apartment 12 bedroom 1 to Apartment 11 bedroom 2	56dB D _{nT,w} + C _{tr}	\geq 45dB D _{nT,w} +C _{tr}	Pass

Table 4:Separating Wall Airborne Sound Insulation Tests Results Compared With The Performance
Requirements Cited by Building Regulations 2000 Approved Document E

P0818-REP01-IE

6.0 DISCUSSION


The results in Tables 2 to 4 show that compliance with the performance standards cited by Building Regulations 2000 Approved Document E for purpose built dwelling-houses and flats have been achieved.

THE FRAME RESIDENTIAL DEVELOPMENT, SPORTCITY, MANCHESTER - THE CONCRETE CENTRE LTD

SOUND INSULATION TEST REPORT

P0818-REP01-IE

Figure 1: First floor layout of The Frame showing location of tested walls and floors

THE FRAME RESIDENTIAL DEVELOPMENT, SPORTCITY, MANCHESTER - THE CONCRETE CENTRE LTD

SOUND INSULATION TEST REPORT

P0818-REP01-IE

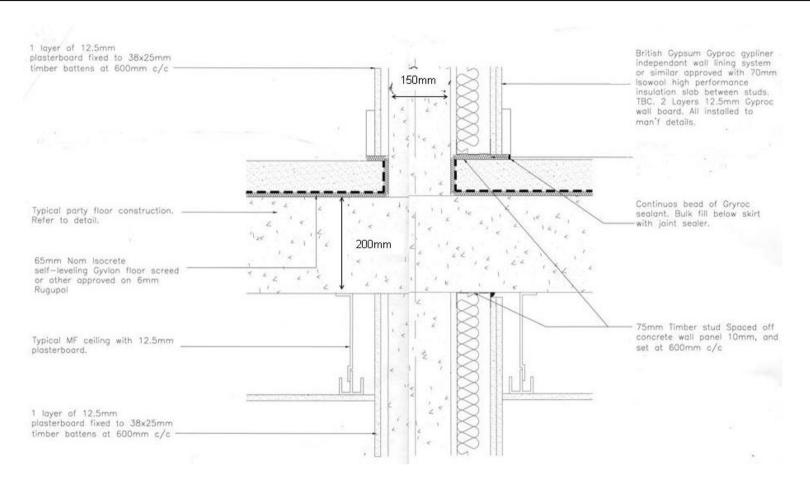


Figure 2: Separating wall and floor constructions between adjacent dwellings at The Frame, Sportcity, Manchester

(detail courtesy of Countryside Properties Limited)

APPENDIX A: GLOSSARY OF ACOUSTIC TERMS

DECIBEL (dB)

This is the unit used to quantify sound levels. The human ear has an approximately logarithmic response to acoustic pressure over a very large dynamic range (typically 20 micro-Pascals to 100 Pascals). We therefore use a logarithmic scale to describe sound pressure level, intensities and sound power levels. The logarithms used are to base 10. Hence, an increase of 10 dB in sound pressure level is equivalent to an increase by a factor of 10 in acoustic pressure in Pascals. Subjectively, this corresponds to a doubling in the perceived loudness of sound.

OCTAVE AND THIRD OCTAVE BANDS

The human ear is sensitive to sound over a range of frequencies between approximately 20Hz to 20000Hz (20kHz), and is generally more sensitive to medium and high frequencies than to low frequencies. In order to define the frequency content of a noise, the spectrum is divided into frequency bands, and the sound pressure level is measured in each band. The most commonly used frequency bands are octave bands, in which the mid-frequency of each band is twice that of the band below it. For instance, the octave bands above and below the 500Hz octave band are 1kHz and 250 Hz respectively. For finer analysis, each octave band may be split into three one-third octave bands or in some cases, finer frequency bands (e.g. 1/12 octaves).

A-WEIGHTING

Normal hearing covers the frequency range from about 20Hz to 20kHz but sensitivity is greatest between approximately 500Hz and 8kHz. The "A-Weighting" is an electronic filter network incorporated in sound level meters that approximately corresponds to the frequency response of the ear. The unit of measurement of A-weighted sound level is dB(A).

P0818-REP01-IE

APPENDIX B: TEST DETAILS

LOCATION

The Frame Residential Development, Sportcity, Manchester

DATES OF TESTS

20 July 2005

PERSONNEL PRESENT DURING MEASUREMENTS

Ian Etchells - Sol Acoustics Simon Webster - Sol Acoustics

INSTRUMENTATION

Norsonic Type 118 IEC 60651 Type 1 Sound Level Meter (serial no. 28116) Norsonic Type 1253 IEC 60942-1997 Class 1 Sound Calibrator (serial no. 27765) Norsonic Nor-211 Tapping Machine Mackie SRM450 Active Sound Reinforcement Speaker System Neutrik Minirator MR1 Noise Generator 9mm calibre blank pistol

CALIBRATION PROCEDURE

Before and after the measurements the Norsonic Type 118 was check calibrated to an accuracy of ± 0.3 dB using the Norsonic Type 1251 Sound Calibrator. The calibrator produces a sound pressure level of 114 dB re 2x10⁻⁵ Pa @ 1kHz.

APPENDIX C: CALCULATION OF WEIGHTED STANDARDISED LEVEL DIFFERENCE

Standardised level difference (D_{nT}) is calculated using the formula given in BS EN ISO 140-4.

$$\label{eq:DnT} \begin{split} D_{nT} &= L_1 - L_2 + 10 \ \text{Log}(\text{T}/\text{T}_{o})\text{dB} \\ \text{Where:} \end{split}$$

L_1	is the average sound pressure level in the source room
-1	is the average beand procedule level in the beared reem

- L₂ is the average sound pressure level in the receiving room
- T is the reverberation time in the receiving room
- T_o is the reference reverberation time (0.5 seconds)

To calculate the Weighted Standardised Level Difference $(D_{nT,w})$ the reference curve defined in BS EN ISO 717-1: 1997 is compared with the results of the above calculation. The reference curve is shifted in steps of 1dB towards the measured curve until the mean favourable deviation is less than or equal to 2dB. The weighted level is then the value of the shifted reference curve at 500Hz.

The Weighted Standardised Level Difference $(D_{nT,w})$ is a true field measurement of a partitions' performance and includes all weaknesses and flanking paths. Where requirements are given as $D_{nT,w}$ values sound insulation tests are often required to show compliance.

APPENDIX D: CALCULATION OF WEIGHTED STANDARDISED IMPACT LEVEL

Standardised impact sound pressure level (L'_{nT}) is calculated using the formula given in BS EN ISO 140 part 7.

 $L_{nT} = L_1 + 10 \text{ Log}(T/T_o) dB$ Where:

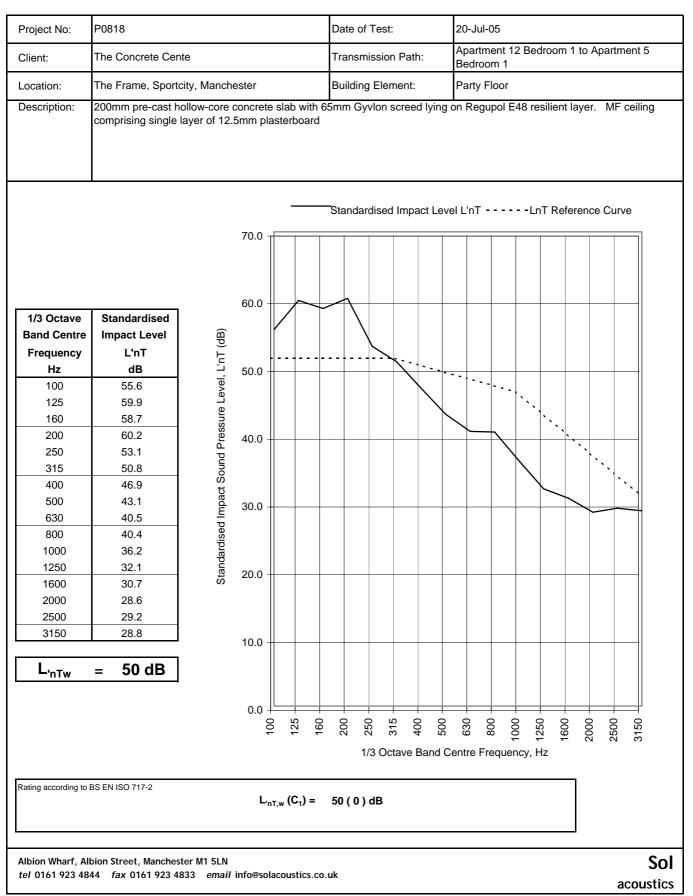
- L₁ is the average sound pressure level in the receive room
- T is the reverberation time in the receiving room
- T_o is the reference reverberation time (0.5 seconds)

To calculate the Weighted Standardised Impact Sound Pressure Level ($L'_{nT,w}$) the reference curve defined in BS EN ISO 717 part 2: 1998 is compared with the results of the above calculation. The reference curve is shifted in steps of 1dB towards the measured curve until the mean favourable deviation is less than or equal to 2dB. The weighted level is then the value of the shifted reference curve at 500Hz.

The Weighted Standardised Impact Sound Pressure Level $(L'_{nT,w})$ is a true field measurement of a floor's performance and includes all weaknesses and flanking paths. Where requirements are given as $L'_{nT,w}$ values sound insulation tests are often required to show compliance.

P0818-REP01-IE

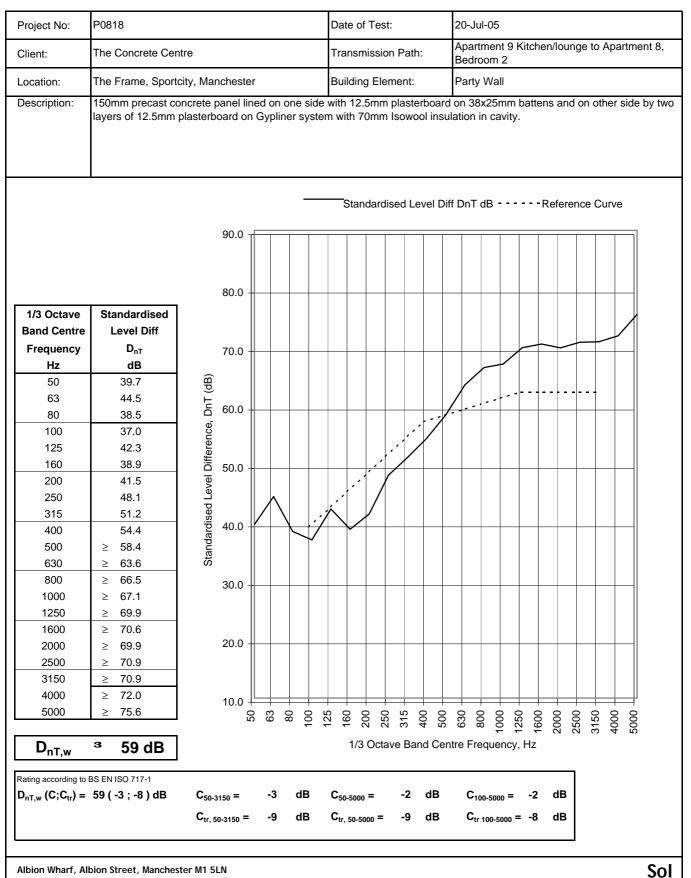
APPENDIX E: TEST CERTIFICATES


Separating Floor Impact Sound Insulation Test Results	
Apartment 9 kitchen/lounge to Apartment 2 kitchen/lounge	49dB L' _{nT,w}
Apartment 12 bedroom 1 to Apartment 5 bedroom 1	50dB L' _{nT,w}
Separating Floor Airborne Sound Insulation Test Results	
Apartment 9 kitchen/lounge to Apartment 2 kitchen/lounge	50dB D _{nT,w} + C _{tr}
Apartment 12 bedroom 1 to Apartment 5 bedroom 1	54dB $D_{nT,w}$ + C_{tr}
Separating Wall Airborne Sound Insulation Test Results	

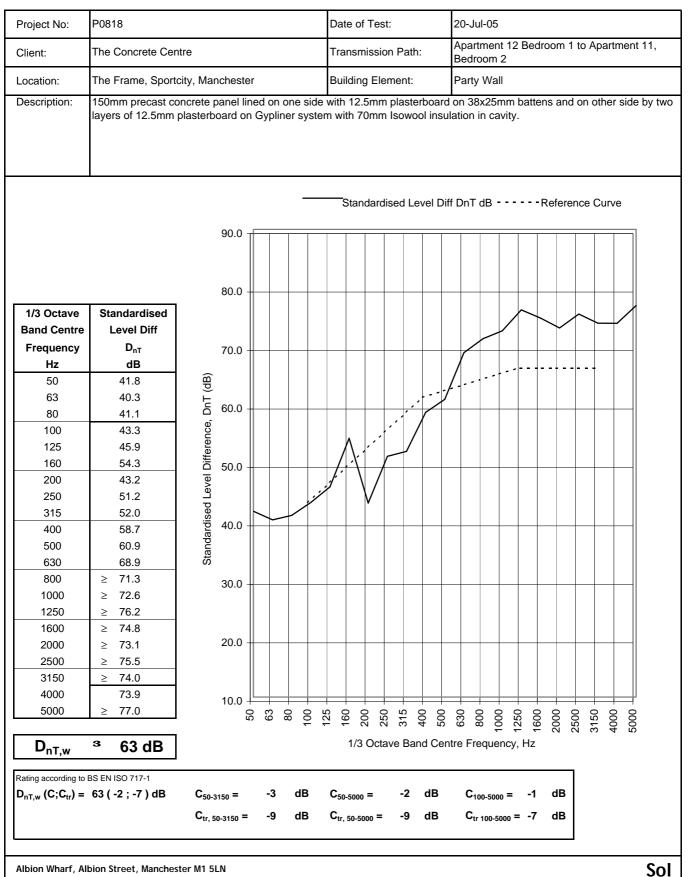
Apartment 9 kitchen/lounge to Apartment 8 bedroom 2	51dB $D_{nT,w}$ + C_{tr}
Apartment 12 bedroom 1 to Apartment 11 bedroom 2	56dB $D_{nT,w}$ + C_{tr}

Calculation of Weighted Standardised Impact Level (L_{'nT,w}) to BS EN ISO 717-2

Calculation of Weighted Standardised Impact Level (L_{'nT,w}) to BS EN ISO 717-2


Project No: Client:	P0818 The Concrete Cen	Dat Tra	Transmission Path:				20-Jul-05 Apartment 9 kitchen - lounge to apartment									
Location:	The Frame, Sporto	city, Manches	ter	Buil	Building Element:				kitchen lounge Party Floor							
Description:	200mm pre-cast he comprising single l					ı Gyvlon	scree	d lying	on Re	gupo	I E48	resilie	nt la	yer.	MF	ceiling
				_	s	Standard	ised L	evel Di	ff DnT	dB -		Re	feren	ice C	urve	
		90.0														
		80.0	-									_		_	_	
1/3 Octave Band Centre	Standardised Level Diff															
Frequency Hz	D _{nT} dB	70.0												\rightarrow	-	
50	39.4	(B)														
63	35.6	E E								\sim	<u>/-</u> -					
80	37.3	<u>ල</u> 60.0							/		-			-	-	
100	38.0	nce						استسترز								
125	39.4	erei														
160	39.0	₩ <u>50.0</u>					·/								\rightarrow	
200	39.5	vel														
250	46.1	d Le				' <i> </i>										
315	52.7	lise(
400	55.7	Standardised Level Difference, DnT (dB) 0.09 0.06												\neg	\neg	
500	56.6	tanc														
630	60.6	õ														
800	61.4	30.0	\parallel	+				+				_		\rightarrow	+	$-\parallel$
1000	60.1															
1250	63.3															
1600	66.7	20.0														
2000	≥ 68.4	20.0														
2500	≥ 71.0															
3150 4000	≥ 70.4 ≥ 73.2															
4000 5000	≥ 73.2 ≥ 75.9	10.0		+										\pm	\pm	Ť
3000	< <u><</u> 10.3		50 63	80 100	125 160	200	315	400 500	630	800 1000	1250	1600	2500	3150	4000	5000
D _{nT,w}	^з 58 dВ					1/3 Octa		nd Cer	ntre Fr				~ ~		А	C J
Rating according to $D_{nTw}(C;C_{tr}) =$	BS EN ISO 717-1 58 (-3 ; -8) dB	C ₅₀₋₃₁₅₀ =	-3	dB	Ceo	₅₀₀₀ =	-2	dB	C,	00-5000	. =	-2 0	B			
,w (=, =u) =		C _{1r, 50-3150}														
		℃ tr, 50-3150	= -9	dB	U _{tr,}	₅₀₋₅₀₀₀ =	-9	dB	U _t	r 100-50	₀₀ =	-0 0	IВ			

tel 0161 923 4844 fax 0161 923 4833 email info@solacoustics.co.uk


Sol acoustics

Project No:	P0818				Date	e of Tes	st:		20-Ju						
Client:	The Concrete Cen	tre	Trai					Apartment 12 Bedroom 1 to Apartment 5, Bedroom 1 Party Floor							
Location:	The Frame, Sporto	city, Manchester	Buil												
	200mm pre-cast h comprising single l				65mm	Gyvlor	scree	d lying (on Reç	Jupol	E48 ı	resilier	it laye	⊧r. M	IF ceili
					s	tandaro	lised L	evel Dif	f DnT (dB		-Refe	erenc	e Cur	ve
		90.0													\square
		00.0													
1/3 Octave Band Centre	Standardised Level Diff	80.0 -													
Frequency	D _{nT}	70.0 -									\land	\rightarrow			
Hz	dB	10.0								\neg					
50	45.7	(B)													
63	41.7	Standardised Level Difference, DnT (dB)							/]		•				
80	43.2	<u>م</u> 60.0		+	+			1		+			+	+	$+ \parallel$
100	41.3	nce													
125	44.5	ere					· /								
160	43.6	JII 50.0 -					\mid						-+	_	$+ \parallel$
200	43.3	evel					K								
250	47.4	g Ľ	\mathbb{N}		1.	$-\!\!/$									
315	50.1	ยั 40.0 -													
400	55.6	dar dar													
500 620	59.9	Stan													
630 800	64.8 68.7														
		30.0 -											+	+	$+ \parallel$
1000 1250	≥ 68.5 ≥ 71.9														
1230	≥ 70.7														
2000	≥ 69.9	20.0 -											-+	—	\parallel
2500	≥ 74.1														
3150	≥ 72.2														
4000	≥ 74.3	10.0 +												\perp	
5000	≥ 77.4	+ 0.01	63	100 +	125 - 160 -	200	315	400 500 -	630 -	1000	1250 -	1600 + 2000 +	2500	3150	4000 + 5000 -
$D_{nT,w}$	^з 60 dВ							nd Cen		~			0	സ	4 W
Rating according to E															
D _{nT,w} (C;C _{tr}) =	60(-2;-6)dB	C ₅₀₋₃₁₅₀ =	-2	dB	C ₅₀₋	₅₀₀₀ =	-1	dB	C ₁₀	0-5000	= -	1 d	3		
		C _{tr, 50-3150} =	-7	dB	C _{tr, s}	50-5000 =	-7	dB	C _{tr}	100-500	₀ = -	6 d	в		

tel 0161 923 4844 fax 0161 923 4833 email info@solacoustics.co.uk

tel 0161 923 4844 fax 0161 923 4833 email info@solacoustics.co.uk

tel 0161 923 4844 fax 0161 923 4833 email info@solacoustics.co.uk

acoustics