Concise Eurocode 2 for Bridges

For the design of concrete bridges to BS EN 1992-1-1 and BS EN 1992-2 and their National Annexes

O Brooker BEng CEng MICE MIStructE
P A Jackson BSc(Hons) PhD CEng FICE FIStructE
SW Salim BEng(Hons) PhD CEng MICE

Foreword

The introduction of European standards to UK construction is a significant event as for the first time all design and construction codes within the EU will be harmonised. The ten design standards, known as the Eurocodes, will affect all design and construction activities as current British Standards for structural design are due to be withdrawn in March 2010.

The cement and concrete industry recognised the need to enable UK design professionals to use Eurocode 2, Design of concrete structures, quickly efficiently and with confidence. Supported by government, consultants and relevant industry bodies, the Concrete Industry Eurocode 2 Group (CIEG) was formed in 1999 and this group has provided the guidance for a coordinated and collaborative approach to the introduction of Eurocode 2.

As a result, a range of resources is being developed and made available through The Concrete Centre (see www.eurocode2.info). One of those resources, Concise Eurocode 2, published in 2006, is targeted at structural engineers designing concrete framed buildings. Whilst there are many similarities in the design of buildings and bridges, there are also significant differences and hence Eurocode 2 has a distinct part for the design of bridges. This publication is based on the style of Concise Eurocode 2, but has been completely revised and rewritten to suit the requirements of Eurocode 2, Part 2 and the current design practices for concrete bridge design.

Relevant extracts have been incorporated from Precast Eurocode 2: Design manual published by British Precast, which is a similar document for designers of precast concrete. The authors are grateful for the permission granted by British Precast.

Acknowledgements

The Concrete Centre would to thank Neil Loudon and Hideo Takano, both of the Highways Agency, for their support and comments in producing this document. We would also like to thank Steve Denton of Parsons Brinckerhoff, Chris Hendy of Atkins and Paul White of Halcrow for their helpful comments. Thanks are also due to Gillian Bond, Sally Huish and the design team at Michael Burbridge Ltd for their work on the production.

The copyright of British Standards extracts reproduced in this document is held by the British Standards Institution (BSI). Extracts have been reproduced with BSI's permission under the terms of Licence No: 2009RM0003. No other use of this material is permitted. This publication is not intended to be a replacement for the standard and may not reflect the most up-to-date status of the standard. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hard copies only:Tel:+44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Published by The Concrete Centre, part of the Mineral Products Association
Riverside House, 4 Meadows Business Park, Station Approach, Blackwater, Camberley, Surrey GU17 9AB Tel: +44 (0) 1276606800 Fax: +44 (0) 1276606801 www.concretecentre.com

Cement and Concrete Industry Publications (CCIP) are produced through an industry initiative to publish technical guidance in support of concrete design and construction.

CCIP publications are available from the Concrete Bookshop at www.concretebookshop.com Tel: +44 (0)7004 607777

CCIP-038
Published July 2009
ISBN 978-1-904818-82-3
Price Group P
© MPA - The Concrete Centre
All advice or information from MPA - The Concrete Centre is intended only for use in the UK by those who will evaluate the significance and limitations of its contents and take responsibility for its use and application. No liability (including that for negligence) for any loss resulting from such advice or information is accepted by Mineral Products Association or its subcontractors, suppliers or advisors. Readers should note that the publications from MPA - The Concrete Centre are subject to revision from time to time and should therefore ensure that they are in possession of the latest version.

Printed by Michael Burbridge Ltd, Maidenhead, UK.

Concise Eurocode 2 for Bridges
 Contents

	Symbols	iv
1	Introduction	1
1.1	Scope	2
2	Basis of design	3
2.1	General	3
2.2	Basic requirements	3
2.3	Limit state design	4
2.4	Assumptions	9
2.5	Foundation design	10
3	Materials	11
3.1	Concrete	11
3.2	Steel reinforcement	13
3.3	Prestressing steel	14
4	Durability and cover	17
4.1	General	17
4.2	Cover for bond, $c_{\text {min,b }}$	18
4.3	Cover for durability, $c_{\text {min,dur }}$	18
4.4	Chemical attack	22
4.5	$\Delta c_{\text {dev }}$ and other allowances	23
5	Structural analysis	25
5.1	General	25
5.2	Idealisation of the structure	25
5.3	Methods of analysis	27
5.4	Loading	29
5.5	Geometrical imperfections	29
5.6	Design moments in columns	31
5.7	Corbels	36
5.8	Lateral instability of slender beams	38
6	Bending and axial force	39
6.1	Assumptions	39
7	Shear	41
7.1	General	41
7.2	Resistance of members not requiring shear reinforcement	41
7.3	Resistance of members requiring shear reinforcement	44

8 Punching shear 50
8.1 General 50
8.2 Applied shear stress 50
8.3 Control perimeters 54
8.4 Punching shear resistance without shear reinforcement 55
8.5 Punching shear resistance with shear reinforcement 56
8.6 Punching shear resistance adjacent to columns 56
8.7 Control perimeter where shear reinforcement is no longer required, $u_{\text {out }}$ 56
8.8 Distribution of shear reinforcement 57
8.9 Punching shear resistance of foundation bases 58
9 Torsion 59
9.1 General 59
9.2 Torsional resistances 59
9.3 Combined torsion and shear 61
10 Strut-and-tie models, bearing zones and partially loaded areas 62
10.1 Design with strut-and-tie models 62
10.2 Partially loaded areas 65
10.3 Bearing zones of bridges 66
11 Prestressed members and structures 67
11.1 General 67
11.2 Brittle Fracture 67
11.3 Prestressing force during tensioning 69
12 Fatigue 72
12.1 Verification conditions 72
12.2 Internal forces and stresses for fatigue verification 72
12.3 Verification of concrete under compression or shear 73
12.4 Limiting stress range for reinforcement under tension 74
13 Serviceability 76
13.1 General 76
13.2 Stress Limitation 76
13.3 Calculation of crack widths 76
13.4 Control of cracking 79
13.5 Minimum reinforcement areas of main bars 80
13.6 Control of deflection 83
14 Detailing - general requirements 85
14.1 General 85
14.2 Spacing of bars 85
14.3 Mandrel sizes for bent bars 85
14.4 Anchorage of bars 86
14.5 Ultimate bond stress 88
14.6 Anchorage of tendons at ULS 89
14.7 Anchorage of tendons at transfer of prestress 90
14.8 Laps 90

$\mathbf{1 5}$	Detailing - particular requirements	$\mathbf{9 4}$
15.1	General	94
15.2	Beams	94
15.3	One-way and two-way spanning slabs	98
15.4	Flat slabs	98
15.5	Columns	100
15.6	Walls	101
15.7	Pile caps	102
15.8	Bored piles	103
15.9	Requirements for voided slabs	103
15.10	Prestressing	104
15.11	Connections	105
15.12	Bearings	106
$\mathbf{1 6}$	Design for the execution stages	$\mathbf{1 0 9}$
$\mathbf{1 7}$	Design aids	$\mathbf{1 1 0}$
$\mathbf{1 7 . 1}$	Design for bending	110
$\mathbf{1 7 . 2}$	Design for beam shear	112
$\mathbf{1 7 . 3}$	Design for punching shear	114
$\mathbf{1 7 . 4}$	Design for axial load and bending	115
$\mathbf{1 8}$	References	$\mathbf{1 2 2}$

Symbols and abbreviations used in this publication

Symbol	Definition	
\|x		Absolute value of x
1/r	Curvature at a particular section	
A	Cross-sectional area; Accidental action	
A, B, C	Variables used in the determination of $\lambda_{\text {lim }}$	
A_{c}	Cross-sectional area of concrete	
$A_{\text {c,eff }}$	Effective area of concrete in tension	
$A_{c t}$	Area of concrete in that part of the section that is calculated to be in tension just before the formation of the first crack	
$A_{\text {d }}$	Design value of an accidental action	
A_{k}	Area enclosed by the centre lines of connecting walls including the inner hollow area (torsion)	
A_{p}	Area of prestressing tendon or tendons	
$A_{p}{ }^{\prime}$	Area of prestressing tendons within $A_{c, \text { eff }}$	
A_{s}	Cross-sectional area of reinforcement	
$A_{s, \text { min }}$	Minimum cross-sectional area of reinforcement	
$A_{\text {s,prov }}$	Area of steel provided	
$\mathrm{A}_{\text {s,req }}$	Area of steel required	
$\mathrm{A}_{\text {s1 }}$	Area of reinforcing steel in layer 1	
$A_{s 2}$	Area of compression steel (in layer 2)	
$A_{\text {sl }}$	Area of the tensile reinforcement extending at least $l_{\text {bd }}+d$ beyond the section considered	
$A_{\text {SM }}\left(A_{\text {sN }}\right)$	Total area of reinforcement required in symmetrical, rectangular columns to resist moment (axial load) using simplified calculation method	
$A_{\text {st }}$	Cross-sectional area of transverse steel (at laps)	
$A_{\text {sw }}$	Cross-sectional area of shear reinforcement	
$A_{\text {sw }}$	Area of punching shear reinforcement in one perimeter around the column	
$A_{\text {sw,min }}$	Minimum cross-sectional area of shear reinforcement	
$A_{\text {sw,min }}$	Minimum area of punching shear reinforcement in one perimeter around the column	
a	Distance, allowance at supports	
a	Geometric data	
Δa	Deviation for geometrical data	
a	An exponent (in considering biaxial bending of columns)	
a	Projection of the footing from the face of the column or wall	
a_{b}	Half the centre-to-centre spacing of bars (perpendicular to the plane of the bend)	
a_{1}	Distance by which the location where a bar is no longer required for bending moment is displaced to allow for the forces from the truss model for shear. ('Shift' distance for curtailment)	
a_{v}	Distance between bearings or face of support and face of load	
a_{1}, b_{1}	Dimensions of the control perimeter around an elongated support (punching shear)	
b	Overall width of a cross-section, or flange width in a T- or L-beam	
b_{0}	Width of the bottom flange of the section	
$b_{\text {e }}$	Effective width of a flat slab (adjacent to perimeter column)	
$b_{\text {eff }}$	Effective width of a flange	
$b_{\text {eq }}\left(h_{\text {eq }}\right)$	Equivalent width (height) of column $=b(h)$ for rectangular sections	
$b_{\text {min }}$	Minimum width of web on T-, I- or L- beams	
$b_{\text {t }}$	Mean width of the tension zone. For a T-beam with the flange in compression, only the width of the web is taken into account	

Symbol	Definition
$b_{\text {w }}$	Width of the web on T-, I- or L- beams. Minimum width between tension and compression chords
b_{y}, b_{z}	Dimensions of the control perimeter (punching shear)
Δc	Permitted deviation from $\mathrm{c}_{\text {nom }}$ (BS EN 13760)
$\Delta c_{\text {, dev }}$	Allowance made in design for deviation
$c_{\text {min }}$	Minimum cover (due to the requirements for bond, $c_{\text {min,b }}$ or durability $c_{\text {min,dur }}$)
$C_{\text {nom }}$	Nominal cover (minimum cover plus allowance for deviations)
$c_{y^{\prime}} c_{x}$	Column dimensions in plan
c_{1}, c_{2}	Dimensions of a rectangular column. For edge columns, c_{1} is measured perpendicular to the free edge (punching shear)
D	Diameter of a circular column; Diameter of mandrel; Diameter
$D_{\text {Ed }}$	Fatigue damage factor
d	Effective depth to tension steel
d_{2}	Effective depth to compression steel
${ }_{c}$	Effective depth of concrete in compression
$d_{\text {eff }}$	Effective depth of the slab taken as the average of the effective depths in two orthogonal directions (punching shear)
d_{g}	Largest maximum aggregate size
d	A short length of a perimeter (punching shear)
E	Effect of action; Elastic modulus
$E_{c^{\prime}}, E_{c(t)}$	Tangent modulus of elasticity of normal weight concrete at a stress of $\sigma_{\mathrm{c}}=0$ and at time, t, days
$E_{\text {c,eff }}$	Effective modulus of elasticity of concrete
$E_{\text {cd }}$	Design value of modulus of elasticity of concrete
$E_{\text {cm }}$	Secant modulus of elasticity of concrete
$E_{\text {d }}$	Design value of the effect of actions
El	Bending stiffness
$E_{\text {p }}$	Design value of elasticity of prestressing steel
$E_{\text {s }}$	Design value of modulus of elasticity of reinforcing steel
Exp.	Expression
EQU	Static equilibrium
e	Eccentricity
e_{2}	Deflection (used in assessing M_{2} in slender columns)
e_{i}	Eccentricity due to imperfections
$e_{\text {par }}$	Eccentricity parallel to the slab edge resulting from a moment about an axis perpendicular to the slab edge (punching shear)
$e_{y^{\prime}} e_{z}$	Eccentricity, $M_{\mathrm{Ed}} / V_{\mathrm{Ed}}$ along y and z axes respectively (punching shear)
F	Action
$F_{\text {bt }}$	Tensile force in the bar at the start of the bend caused by ultimate loads
$F_{c}\left(F_{s}\right)$	Force in concrete (steel)
$F_{\text {cd }}$	Design value of the concrete compression force in the direction of the longitudinal member axis
$F_{\text {cr }}$	Absolute value of the tensile force within the flange immediately prior to cracking due to the cracking moment calculated with $f_{c t, \text { eff }}$
$F_{\text {d }}$	Design value of an action
$F_{\text {E }}$	Tensile force in reinforcement to be anchored
$F_{\text {Ed }}$	Compressive force, design value of support reaction
$F_{\text {k }}$	Characteristic value of an action

Symbol	Definition
$F_{\text {rep }}$	Representative action ($=\psi F_{\mathrm{k}}$ where $\psi=$ factor to convert characteristic to representative action)
$F_{\text {Rs }}$	Resisting tensile force in steel
$F_{\text {s }}$	Tensile force in the bar
$F_{\text {td }}$	Design value of the tensile force in longitudinal reinforcement
$\Delta F_{\text {td }}$	Additional tensile force in longitudinal reinforcement due to the truss shear model
$F_{\text {wd }}$	Design shear strength of weld, design value of the force in stirrups in corbels
$F_{\text {wk }}$	Characteristic value of wind force (Annex A2, BS EN 1990)
f	Frequency
$f_{\text {bd }}$	Ultimate bond stress
f_{c}	Compressive strength of concrete
$f_{c d}$	Design value of concrete compressive strength
$f_{\text {cd,fat }}$	Design fatigue strength of concrete
$f_{\text {cd, } \mathrm{pl}}$	Design compressive strength of plain concrete
$f_{\text {ck }}$	Characteristic compressive cylinder strength of concrete at 28 days
$f_{c k}\left(t_{0}\right)$	Characteristic concrete compressive strength at time of loading
$f_{\text {ck, cube }}$	Characteristic compressive cube strength of concrete at 28 days
$f_{\text {cm }}$	Mean value of concrete cylinder compressive strength
$f_{\text {ct,d }}$	Design tensile strength of concrete ($\alpha_{\text {ct }} f_{c t, k} / \gamma_{C}$)
$f_{\text {ct,eff }}$	Mean tensile strength of concrete effective at the time cracks may be first expected to occur. $f_{c t, e f f}=f_{c t m}$ at the appropriate age
$f_{c t, k}$	Characteristic axial tensile strength of concrete
$f_{\text {ctb }}$	Tensile strength prior to cracking in biaxial state of stress
$f_{\text {ctm }}$	Mean value of axial tensile strength of concrete
$f_{\text {ctx }}$	Appropriate tensile strength for evaluation of cracking bending moment
$f_{\text {ctik,0.05 }}$	5% fractile value of axial tensile strength of concrete
$f_{\text {ctk, } 0.95}$	95\% fractile value of axial tensile strength of concrete
$f_{\text {cvd }}$	Concrete design strength in shear and compression (plain concrete)
f_{p}	Tensile strength of prestressing steel
$f_{\text {p0. } 1}$	0.1% proof-stress of prestressing steel
$f_{\text {po. } 1 \mathrm{k}}$	Characteristic 0.1\% proof-stress of prestressing steel
$f_{\text {po.2k }}$	Characteristic 0.2\% proof-stress of prestressing steel
$f_{\text {pk }}$	Characteristic tensile strength of prestressing steel
$f_{\text {sc }}$	Compressive stress in compression reinforcement at ULS
$f_{\text {t }}$	Tensile strength of reinforcement
$f_{\text {t,k }}$	Characteristic tensile strength of reinforcement
$f_{\text {y }}$	Yield strength of reinforcement
$f_{y d}$	Design yield strength of longitudinal reinforcement, $A_{\text {sl }}$
$f_{\text {yk }}$	Characteristic yield strength of reinforcement
$f_{\text {ywd }}$	Design yield strength of the shear reinforcement
$f_{\text {ywd,ef }}$	Effective design strength of punching shear reinforcement
$f_{\text {ywk }}$	Characteristic yield strength of shear reinforcement
$G_{\text {k }}$	Characteristic value of a permanent action
$g_{\text {k }}$	Characteristic value of a permanent action per unit length or area
H_{i}	Horizontal action applied at a level
h	Overall depth of a cross-section; Height

Symbol Definition

h_{0}	Notional size of cross-section
$h_{\text {f }}$	Depth of footing; Thickness of flange
h_{H}	Vertical height of a drop or column head below soffit of a slab (punching shear)
$h_{\text {s }}$	Depth of slab
1	Second moment of area of concrete section
i	Radius of gyration
J	Creep function
K	$M_{\mathrm{Ed}} / b d^{2} f_{\text {ck }}$. A measure of the relative compressive stress in a member in flexure
K	Factor to account for structural system (deflection)
K^{\prime}	Value of K above which compression reinforcement is required
k_{c}	Factor for cracking and creep effects
${ }_{\text {K }}$	Correction factor for curvature depending on axial load
$k_{\text {s }}$	Factor for reinforcement contribution
K φ	Factor for taking account of creep
k	Coefficient or factor
k	Unintentional angular displacement for internal tendons
k_{c}	Coefficient allowing for the nature of the stress distribution within the section immediately prior to cracking and for the change of the lever arm as a result of cracking (minimum areas)
$k_{\text {t }}$	Factor in crack width calculations which depends on the duration of loading
1	Clear height of column between end restraints
1	Height of the structure in metres
1 (or L)	Length; Span
l_{0}	Effective length (of columns)
l_{0}	Distance between points of zero moment
l_{0}	Design lap length
$l_{\text {bd }}$	Design anchorage length
$l_{\text {b,eq }}$	Equivalent anchorage length
$l_{\text {b,min }}$	Minimum anchorage length
$l_{\text {b, rad }}$	Basic anchorage length
$l_{\text {eff }}$	Effective span
$I_{\text {H }}$	Horizontal distance from column face to edge of a drop or column head below soffit of a slab (punching shear)
$l_{\text {n }}$	Clear distance between the faces of supports
$l_{\text {s }}$	Floor to ceiling height
${ }^{l_{x} l^{\prime} l_{y}}$	Spans of a two-way slab in the x and y directions
M	Bending moment. Moment from first order analysis
M	Moment resistance of a singly reinforced section (above which compression reinforcement is required)
$M_{0, \text { Eqp }}$	First order bending moment in quasi-permanent load combination (SLS)
M_{01}, M_{02}	First order end moments at ULS including allowances for imperfections
$M_{\text {OEd }}$	Equivalent first order moment including the effect of imperfections (at about mid height)
M_{2}	Nominal second order moment in slender columns
$M_{\text {Ed }}$	Design value of the applied internal bending moment
$M_{\text {Edy }} M_{\text {Edz }}$	Design moment in the respective direction
$M_{\text {freq }}$	Applied bending moment due to frequent combination
$M_{\text {Rdy }} M_{\text {Rdz }}$	Moment resistance in the respective direction

Symbol	Definition
$M_{\text {Rd,max }}$	Maximum transverse moment resistance
$M_{\text {rep }}$	Cracking bending moment
m	Number of vertical members contributing to an effect
m	Mass; Slab components
N	Axial force
NA	National Annex
$N_{a^{\prime}} N_{\text {b }}$	Longitudinal forces contributing to H_{i}
$N_{\text {Ed }}$	Design value of axial force (tension or compression) at ULS
NDP	Nationally Determined Parameter(s) as published in a country's National Annex
n	Axial stress at ULS
n	Ultimate action (load) per unit length (or area)
n	Plate components
n	Number of bars
n_{b}	Number of bars in the bundle
P	Prestressing force
P_{0}	Initial force at the active end of the tendon immediately after stressing
Q_{c}	Characteristic construction load
$Q_{\text {fat }}$	Characteristic fatigue load
Q_{k}	Characteristic value of a variable action
$\mathrm{Q}_{\mathrm{k} 1}\left(\mathrm{Q}_{\mathrm{k}}\right)$	Characteristic value of a leading variable action (Characteristic value of an accompanying variable action)
$Q_{\text {Sn,k }}$	Characteristic value of snow load
q_{k}	Characteristic value of a variable action per unit length or area
$q_{\text {ud }}$	Maximum value of combination reached in non-linear analysis
R	Resistance
R / A^{\prime}	Vertical bearing resistance per unit area (foundations)
$R_{\text {d }}$	Design value of the resistance to an action
RH	Relative humidity
r	Radius; Correcting factor for prestress
$r_{\text {cont }}$	The distance from the centroid of a column to the control section outside the column head
$r_{\text {inf, }} r_{\text {sup }}$	Allowance in serviceability and fatigue calculations for possible variations in prestress
$r_{\text {m }}$	Ratio of first order end moments in columns at ULS
S	Internal forces and moments; First moment of area
S, N, R	Cement types
SLS	Serviceability limit state(s) - corresponding to conditions beyond which specified service requirements are no longer met
s	Spacing of the stirrups; Spacing between cracks
S_{r}	Radial spacing of perimeters of shear reinforcement
$s_{\text {r,max }}$	Maximum final crack spacing
s_{t}	Tangential spacing shear reinforcement along perimeters of shear reinforcement
T	Torsional moment; Tensile force
$T_{\text {Ed }}$	Design value of the applied torsional moment
$T_{\text {k }}$	Characteristic value of thermal actions
$T_{\text {Rd }}$	Design torsional resistance moment
$T_{\text {Rd,max }}$	Maximum design torsional resistance moment resistance
t	Thickness; Time being considered; Breadth of support; Time after tensioning

Symbol	Definition
t_{0}	The age of concrete at the time of loading
$t_{0, T}$	Temperature adjusted age of concrete at loading in days
$t_{\text {ef, } i}$	Effective wall thickness (torsion)
$t_{\text {inf }}$	Thickness of the bottom flange of the section
ULS	Ultimate limit state(s) - associated with collapse or other forms of structural failure
u	Perimeter of concrete cross-section, having area A_{c}
u	Perimeter of that part which is exposed to drying
u	Circumference of outer edge of effective cross-section (torsion)
u	Component of the displacement of a point
u_{0}	Perimeter adjacent to columns (punching shear)
u_{1}	Basic control perimeter, (at 2d from face of load) (punching shear)
$u_{1 *}$	Reduced control perimeter at perimeter columns (at 2d from face of load) (punching shear)
u_{i}	Length of the control perimeter under consideration (punching shear)
$u_{\text {k }}$	Perimeter of the area A_{k} (torsion)
$\underline{u_{\text {out }}}$	Perimeter at which shear reinforcement is no longer required
V	Shear force
$V_{\text {Ed }}$	Design value of the applied shear force
$V_{\text {Ed,red }}$	Applied shear force reduced by the force due to soil pressure less self weight of base (punching shear, foundations)
$V_{\text {Rd, },}$	Shear resistance of a member without shear reinforcement
$V_{\text {Rd,max }}$	Shear resistance of a member limited by the crushing of compression struts
$V_{\text {Rd, }}$	Shear resistance of a member governed by the yielding of shear reinforcement
v	Transverse shear or component of the displacement of a point
$v_{\text {Ed }}$	Punching shear stress
$V_{\text {Ed }}$	Shear stress for sections without shear reinforcement ($\left.=V_{\text {Ed }} / b_{w} d\right)$
$v_{\text {Ed,z }}$	Shear stress for sections with shear reinforcement ($=V_{\text {Ed }} / b_{\text {w }}{ }^{Z}=V_{\text {Ed }} / b_{w} 0.9 \mathrm{~d}$)
$v_{\text {Rd, }, ~}$	Design shear resistance of concrete without shear reinforcement expressed as a stress
$V_{\text {Rd, }}$	Design punching shear resistance of concrete with shear reinforcement expressed as a stress (punching shear)
$\underline{V_{\text {Rd, max }}}$	Resistance of concrete struts expressed as a stress
W_{1}	Factor corresponding to a distribution of shear (punching shear)
w	Component of the displacement of a point
$w_{\text {k }}$	Crack width
$w_{\text {max }}$	Limiting calculated crack width
x	Advisory limit of percentage of coupled tendons at a section
$\begin{aligned} & \mathrm{XO}, \mathrm{XA}, \mathrm{XC} \\ & \mathrm{XD}, \mathrm{XF}, \mathrm{XS} \end{aligned}$	Concrete exposure classes
\times	Neutral axis depth
x	Distance of the section being considered from the centre line of the support
x, y, z	Co-ordinates; Planes under consideration
${ }^{x_{c}}$	Depth of the compression zone
x_{u}	Depth of the neutral axis at the ultimate limit state after redistribution
z	Lever arm of internal forces
$z_{\text {cp }}$	Distance between centre of gravity of concrete section and tendons
$z_{\text {s }}$	Lever arm for prestress
α	Angle; Angle of shear links to the longitudinal axis; Ratio
α	Long term effects coefficient

Symbol Definition

α	Ratio between principal stresses
α	Deformation parameter
$\begin{aligned} & \hline \alpha_{1}, \alpha_{2^{\prime}} \alpha_{3} \\ & \alpha_{4^{\prime}}, \alpha_{5}, \alpha_{6} \\ & \hline \end{aligned}$	Factors dealing with anchorage and laps of bars
$\alpha_{1}, \alpha_{2}, \alpha_{3}$	Factors used in creep calculations
$\alpha_{\text {cc }}\left(\alpha_{\text {ct }}\right)$	A coefficient taking into account long term effects of compressive (tensile) load and the way load is applied
$\alpha_{\text {cw }}$	Coefficient taking account of the state of stress in the compression chord
$\alpha_{\text {e }}$	Effective modular ratio
$\alpha_{\text {h }}$	Reduction factor for θ
β	Angle; Ratio; Coefficient
β	Factor dealing with eccentricity (punching shear)
$\beta\left(f_{c m}\right)$	Factor to allow for the effect of concrete strength on the notional creep coefficient
$\beta_{\text {H }}$	Coefficent depending on the relative humidity and the notional member size
$\beta\left(t_{0}\right)$	Factor to allow for the effect of concrete age at loading on the notional creep coefficient
$\beta\left(t, t_{0}\right)$	Coefficient to describe the development of creep with time after loading
γ	Partial factor
$\gamma_{\text {A }}$	Partial factor for accidental actions, A
γ_{C}	Partial factor for concrete
$\gamma_{C, \text { fat }}$	Partial factor for fatigue of concrete
γ_{F}	Partial factor for actions, F
$\gamma_{\text {F,fat }}$	Partial factor for fatigue actions
γ_{f}	Partial factor for actions without taking account of model uncertainties
γ_{g}	Partial factor for permanent actions without taking account of model uncertainties
γ_{G}	Partial factor for permanent actions, G
γ_{M}	Partial factor for a material property, taking account of uncertainties in the material property itself, in geometric deviation and in the design model used
γ_{p}	Partial factor for actions associated with prestressing, P
γ_{Q}	Partial factor for variable actions, Q
$\gamma_{\text {S }}$	Partial factor for reinforcing steel or prestressing steel
$\gamma_{\text {s,fat }}$	Partial factor for reinforcing or prestressing steel under fatigue loading
$\gamma_{S H}$	Partial factor for shrinkage
δ	Ratio of the redistributed moment to the elastic bending moment.
$\varepsilon_{\text {c }}$	Compressive strain in concrete
$\varepsilon_{c 1}$	Compressive strain in the concrete at the peak stress f_{c}
$\varepsilon_{\text {c2 }}$	Compressive strain limit in concrete for concrete in pure axial compression or strain in concrete at reaching maximum strength assuming use of the parabolic-rectangular relationship

$\varepsilon_{\mathrm{c} 3} \quad$ Compressive strain limit in concrete for concrete in pure axial compression or strain in concrete at reaching maximum strength assuming use of the bilinear stress-strain relationship

$\varepsilon_{\mathrm{ca}}$	Autogenous shrinkage strain
$\varepsilon_{\mathrm{cc}}$	Creep strain
$\varepsilon_{\mathrm{cd}}$	Drying shrinkage strain
$\varepsilon_{\mathrm{cm}}$	Mean strain in concrete between cracks
$\varepsilon_{\mathrm{cs}}$	Total shrinkage strain
$\varepsilon_{\mathrm{cu}}$	Ultimate compressive strain in the concrete
$\varepsilon_{\mathrm{cu} 2}$	Ultimate compressive strain limit in concrete which is not fully in pure axial compression assuming use of the parabolic-rectangular stress-strain relationship (numerically $\left.\varepsilon_{\mathrm{cu} 2}=\varepsilon_{\mathrm{cu}}\right)$

Symbol	Definition
$\varepsilon_{\text {cu3 }}$	Ultimate compressive strain limit in concrete which is not fully in pure axial compression assuming use of the bilinear stress-strain relationship
$\varepsilon_{\text {p(0) }}$	Initial strain in prestressing steel
$\Delta \varepsilon_{\mathrm{p}}$	Change in strain in prestressing steel
$\varepsilon_{\text {s }}$	Strain in reinforcing steel
$\varepsilon_{\text {sm }}$	Mean strain in reinforcement
ε_{u}	Strain of reinforcement or prestressing steel at maximum load
$\varepsilon_{\text {ud }}$	Design limit for strain for reinforcing steel in tension $=0.9 \varepsilon_{\text {uk }}$
$\varepsilon_{\mathrm{uk}}$	Characteristic strain of reinforcement (or prestressing steel) at maximum load
ε_{y}	Reinforcement yield strain
η	Factor defining effective strength ($=1$ for \leq C50/60)
η_{1}	Coefficient for bond conditions
η_{2}	Coefficient for bar diameter
$\eta_{\mathrm{p} 1}$	Coefficient that takes into account the type of tendon and the bond situation at release
θ	Angle; Angle of compression struts (shear)
$\theta_{\text {fat }}$	Inclination of compressive struts
θ_{i}	Inclination used to represent imperfections
λ	Slenderness ratio
λ	Damage equivalent factors in fatigue
λ	Factor defining the height of the compression zone ($=0.8$ for \leq C50/60)
$\lambda_{\text {lim }}$	Limiting slenderness ratio (of columns)
μ	Coefficient of friction between the tendons and their ducts
μ	Characteristic value of the tensile strength of prestressing steel
v	Poisson's ratio
ν_{1}	Strength reduction factor for concrete cracked in shear
ξ	Creep redistribution function
ξ	Bond strength ratio
ξ_{1}	Adjusted area of bond strength
ρ	Required tension reinforcement ratio. Assume $A_{s} / b d$
ρ	Oven dry density of concrete in $\mathrm{kg} / \mathrm{m}^{3}$
ρ^{\prime}	Reinforcement ratio for required compression reinforcement, $A_{\text {s2 }} / \mathrm{bd}$
ρ_{0}	Reference reinforcement ratio $f_{c k}^{0.5} \times 10^{-3}$
ρ_{1}	Percentage of reinforcement lapped within $0.65 l_{0}$ from the centre line of the lap being considered
ρ_{1000}	Value of relaxation loss (in \%) at 1000 hours after tensioning and at a mean temperature of $20^{\circ} \mathrm{C}$
ρ_{l}	Reinforcement ratio for longitudinal reinforcement
ρ_{w}	Reinforcement ratio for shear reinforcement
σ_{c}	Compressive stress in the concrete
$\sigma_{\text {cp }}$	Compressive stress in the concrete from axial load or prestressing
$\sigma_{\text {cu }}$	Compressive stress in the concrete at the ultimate compressive strain $\varepsilon_{\text {cu }}$
σ_{gd}	Design value of the ground pressure
σ_{pi}	The absolute value of initial prestress
$\sigma_{\text {pmo }}$	The absolute value of initial prestress during post-tensioning
$\sigma_{\text {Rd,max }}$	Design strength of concrete strut
$\sigma_{\text {s }}$	Stress in reinforcement at SLS
$\sigma_{\text {s }}$	Absolute value of the maximum stress permitted in the reinforcement immediately after the formation of the crack

Symbol	Definition
$\sigma_{\mathrm{sc}}\left(\sigma_{\mathrm{st}}\right)$	Stress in compression (and tension) reinforcement
σ_{sd}	Design stress in the bar at the ultimate limit state
σ_{sr}	Stress in the tension reinforcement calculated on the basis of a cracked section under the loading conditions causing first cracking
τ	Torsional shear stress
Φ	Dynamic factor according to BS EN 1991-2
φ_{0}	Notional creep coefficient
$\varphi\left(\infty, t_{0}\right)$	Final value of creep coefficient
$\varphi_{\text {ef }}$	Effective creep factor
$\varphi_{\text {fat }}$	Damage equivalent impact factor in fatigue
$\varphi_{\mathrm{rl}}\left(\infty, t_{0}\right)$	Non-linear notional creep coefficient
φ_{p}	Equivalent diameter of tendon
$\varphi\left(t, t_{0}\right)$	Creep coefficient, defining creep between times t and t_{0}, related to elastic deformation at 28 days
φ_{RH}	Factor to allow for the effect of relative humidity on the notional creep coefficient
ϕ	Bar diameter; Diameter of prestressing duct
ϕ_{eq}	Equivalent bar diameter
ϕ_{m}	Mandrel diameter
ϕ_{n}	Equivalent diameter of a bundle of reinforcing bars
χ	Ageing coefficient
ψ	Factors defining representative values of variable actions
ψ_{0}	Combination value of a variable action (e.g. used when considering ULS)
ψ_{1}	Frequent value of a variable action (e.g. used when considering whether section will have cracked or not $)$
ψ_{2}	Quasi-permanent value of a variable action (e.g. used when considering deformation)
	Mechanical reinforcement ratio = $A_{s} f_{\text {yd }} / A_{\mathrm{c}} f_{\text {cd }} \leq 1$

1 Introduction

BS EN 1992-1-1 (Eurocode 2: Design of concrete structures Part 1-1 ${ }^{[1]}$) sets out general rules for the design of concrete structures and rules for the design of buildings. BS EN 1992-2 (Eurocode 2 - Part 2 Concrete bridges - Design and detailing rules) ${ }^{[2]}$ provides additional or amended guidance to Part 1-1 for bridge structures.

The aim of this Concise Eurocode 2 for Bridges is to distil from all relevant parts of BS EN 1992 and the UK National Annexes material that will be commonly used in the design of normal bridge structures. Each country can publish non-contradictory, complementary information, and for concrete bridge design, PD 6687, Part $2{ }^{[3]}$ gives useful guidance. Material from this document is also included where appropriate, and presented on a pale yellow background to distinguish it from the main text.

As far as possible, the Eurocode clauses are repeated verbatim. One of the objectives is to embed the UK National Annex values into the document for ease of use. Due to the way Nationally Determined Parameters (NDPs) are introduced in the Eurocodes it has been necessary in some places to modify the text for clarity of reading. It has not been the intention to modify the meaning of the text and clearly if there is any doubt as to the meaning then the original Eurocode version should be adopted.

Further, some of the original text has been modified to reduce its length, while keeping the same meaning. In this case the text has been given a grey background to draw the reader's attention to the fact that the text is not strictly from the Code. Likewise other text, derived formulae, tables and illustrations that are provided to assist the designers but that are not taken directly from the original have been given a grey background. As before, it is intended to convey the original meaning and where any doubt exists the meaning of Eurocode 2 should be adopted.

The NDPs are recognition that each Member State of the EU is responsible for determining matters such as safety and current practice and allow individual countries to set their own values. As noted above, the UK values have been adopted throughout, but have been highlighted with a green background so that it is clear to the reader what NDP value has been used.

Guide to presentation
Grey shaded text, tables and figures
Yellow shaded text,
tables and figures
\section*{BS EN 1992-1-1

6.4.4}
BS EN 1992-1-1
NA
BS EN 1992-1-1
6.4.4 \& NA
Section 5.2
1.0
Modified Eurocode 2 text and additional text, derived formulae, tables and illustrations not from Eurocode 2
Additional text from PD 6687 ${ }^{[6]}$ or PD 6687-2 ${ }^{[3]}$
Relevant code and clauses or figure numbers
From the relevant UK National Annex
From both Eurocode 2-1-1 and UK National Annex
Relevant parts of this publication
Nationally Determined Parameter. UK values have been used throughout

For ease of reference, this guide is repeated on the inside back cover.

1.1 Scope

This publication is intended to cover the design of a typical bridge; there are particular types of bridges such as suspension bridges and segmental bridges that should not be designed without reference to the Code itself. It should also be noted that not every method presented in the Code is given here. Generally, the simplest and more conservative methods have been included and therefore the reader may find there are benefits to be gained by using other methods and should consult the Code on these occasions.

This publication does not cover the method of designing concrete elements using membrane rules. Membrane elements may be used for the design of two-dimensional concrete elements subject to a combination of internal forces evaluated by means of a linear finite element analysis. The reader should refer to BS EN 1992-2 Annex LL in conjunction with Annex F and Cl .6 .109 for detailed guidance. For the design or verification of shell elements subject to bending alone (i.e. with zero membrane forces) the approaches given by Wood Armer ${ }^{[4]}$ and Denton \& Burgoyne ${ }^{[5]}$ may generally be used.

2 Basis of design

2.1 General

BS EN 1992-1-1 $1^{[1]}$ and BS EN 1992-2 $2^{[2]}$ should be used in conjunction with BS EN 1990: Basis of structural design ${ }^{[7]}$, which:

Establishes principles and requirements for the safety, serviceability and durability of structures.

- Describes the basis for their design and verification.
- Gives guidelines for related aspects of structural reliability.

2.2 Basic requirements

2.2.1 General

A structure should be designed and executed (constructed) in such a way that it will, during its intended life, with appropriate degrees of reliability and in an economical way:

BS EN 1990
2.1(1), (2) \& (4)
\square Sustain all actions and influences likely to occur during execution and use.

- Meet the specified serviceability requirements for a structure or a structural member.

It should be designed to have adequate structural resistance, serviceability and durability.
A structure should be designed and executed in such a way that it will not be damaged by events such as explosion, impact and the consequences of human errors, to an extent disproportionate to the original cause.

2.2.2 Avoidance of damage

Potential damage should be avoided or limited by appropriate choice of one or more of the following:

- Avoiding, eliminating or reducing the hazards to which the structure can be subjected.
- Selecting a structural form which has low sensitivity to the hazards considered.
- Selecting a structural form and design that can survive adequately the accidental removal of an individual structural member or a limited part of the structure or the occurrence of localised damage.
- Avoiding as far as possible structural systems that can collapse without warning.
- Tying the structural members together.

2.2.3 Limit states principles

BS EN 1990 implies that the design should be verified using limit states principles.
An indicative value of 120 years is given in the UK National Annex for the design working life of bridges. It can generally be assumed that the guidance given in BS $8500^{[8]}$ for at least a 100-year 'intended working life' will be appropriate for an 'indicative design working life' of 120 years.

BS EN 1992-1-1 1.1.1(3)

2.3 Limit state design

BS EN 1990
3.1 \& 3.4

BS EN 1990
3.2

BS EN 1990
1.5.3.1

BS EN 1990
1.5.3.3

BS EN 1990
1.5.3.4

BS EN 1990
1.5.3.5

BS EN 1990
4.1.2(1)

2.3.1 Design situations

Normally, in non-seismic zones, the following design situations should be considered:

- Persistent situations which refer to the conditions of normal use.
- Transient situations which refer to temporary conditions, such as during execution or repair.
- Accidental situations which refer to exceptional conditions applicable to the structure or to its exposure e.g. fire, explosion, impact or the consequences of localised failure.

2.3.2 Actions

Actions refer to a set of forces (loads) applied to the structure (direct action), or to a set of imposed deformations or accelerations caused, for example, by temperature changes, moisture variation, uneven settlement or earthquakes (indirect action).

- Permanent actions refer to actions for which the variation in magnitude with time is negligible.
- Variable actions are actions for which the variation in magnitude with time is not negligible.

Accidental actions are actions of short duration but of significant magnitude that are unlikely to occur on a given structure during the design working life.

The characteristic value, F_{k}, of an action is its main representative value and shall be specified by:

- A mean value - generally used for permanent actions.
- An upper value with an intended probability of not being exceeded or lower value with an intended probability of being achieved - normally used for variable actions with known statistical distributions, such as wind or snow.
- A nominal value - used for some variable and accidental actions.

The values of actions given in the various parts of BS EN 1991: Actions on structures ${ }^{[9]}$ are taken as characteristic values.

2.3.3 Verification

> Verification, using the partial factor method, is detailed in BS EN $1990{ }^{[4]}$. In this method it is verified that, in all relevant design situations, no relevant limit state is exceeded when design values for actions and resistances are used in the design models.

Limit states are states beyond which the structure no longer fulfils the relevant design criteria:

- Ultimate limit states (ULS) are associated with collapse or other forms of structural failure.
- Serviceability limit states (SLS) correspond to conditions beyond which specified service requirements are no longer met.

Limit states should be verified in all relevant design situations selected, taking into account the circumstances under which the structure is required to fulfil its function.

2.3.4 Design values of actions

The design value, F_{d}, of an action, F, can be expressed in general terms as $F_{\mathrm{d}}=\gamma_{\mathrm{F}} \psi F_{\mathrm{k}}$ where $\gamma_{F}=$ partial factor for the action which takes account of the possibility of unfavourable deviations of the action values from the representative values. $\psi=$ a factor for the action ψ can have the value $1.0, \psi_{0}$ or ψ_{1} or ψ_{2} which is used to obtain the characteristic, combination, frequent and quasi-permanent values respectively. It adjusts the value of the action to account for the joint probability of the actions occurring simultaneously. See Tables 2.1 to 2.3 which are derived from BS EN 1990 and its National Annex ${ }^{[7 a]}$. $F_{\mathrm{k}}=$ characteristic value of an action.

Table 2.1
Values of ψ factors for road bridges

Action	Symbol		ψ_{0}	ψ_{1}	ψ_{2}	
Traffic loads (see BS EN 1991-2, table 4.4)	gr1a ${ }^{\text {a }}$	TS	0.75	0.75	0	
		UDL	0.75	0.75	0	
		Pedestrian and cycle-track loads ${ }^{\text {b }}$	0.40	0.40	0	
	gr1b ${ }^{\text {a }}$	Single axle	0	0.75	0	
	gr2	Horizontal forces	0	0	0	BS EN 1990 NA table NA. A.2.1
	gr3	Pedestrian loads	0	0.40	0	
	gr4	Crowd loading	0	0.75	0	
	$\mathrm{gr} 5^{\mathrm{c}}$	Vertical forces from SV and SOV Vehicles	0	1.0	0	
Wind forces	$F_{\text {Wk }}$	Persistent design situations	0.50	0.20	0	
	$F_{\text {wk }}$	During execution	0.80	-	0	
	$F^{*}{ }_{W}$	During execution	1.0	-	0	
Thermal actions	T_{k}		$0.60{ }^{\text {d }}$	0.60	0.50	
Snow loads	$Q_{S n, k}$ (during execution)		0.80	-	-	
Construction loads	Q_{c}		1.0	-	1.0	
Key a The values of ψ_{0}, ψ_{1} and ψ_{2} for gr1a and gr1b are given for road traffic corresponding to adjusting factors $\alpha_{\mathrm{Qi}}, \alpha_{\mathrm{qi}}, \alpha_{\mathrm{qr}}$ and $\beta_{\mathrm{Q}}=1$ b The value of the pedestrian and cycle-track load, given in Table 4.4a of EN 1991-2, is a 'reduced' value accompanying the characteristic value of LM1 and should not be factored again by ψ_{1}. However, when gr1a is combined with leading non-traffic actions, this value should be factored by ψ_{0} c In accordance with BS EN 1991-2 Cl. 4.5.2, the frequent value of gr5 does not need to be considered. d The ψ_{0} value for thermal actions may in most cases be reduced to 0 for ultimate limit states EQU, STR and GEO						

Table 2.2
Values of ψ factors for footbridges

Action	Symbol	$\psi_{\mathbf{0}}$	$\psi_{\mathbf{1}}$	$\psi_{\mathbf{2}}$
Traffic loads	gr1	0.4	0.4	0
	$Q_{\text {fwk }}$	0	0	0
	gr2	0	0	0
Wind forces	$F_{\text {Wk }}$	0.3	0.2	0
Thermal actions	T_{k}	$0.6^{\text {a }}$	0.6	0.5
Snow loads	$Q_{\text {Sn,k }}$ (during execution)	0.8	-	0
Construction loads	Q_{c}	1.0	-	1.0
Key a The ψ_{0} value for thermal actions may in most cases be reduced to and $G E O$				
Cor ultimate				

BS EN 1990 NA table NA. A.2.2

Table 2.3
Values of ψ factors for railway bridges

Actions			ψ_{0}	ψ_{1}	$\psi_{2}{ }^{\text {a }}$
Individual components of traffic actions ${ }^{\text {b }}$	LM71		0.80	c	0
	SW/0		0.80	c	0
	SW/2		0	1.00	0
	Unloaded train		1.00	-	-
	HSLM		1.00	1.00	0
	Tracking and braking Centrifugal forces Interaction forces due to deformation under vertical traffic loads		Individual components of traffic actions in design situations where the traffic loads are considered as a single (multi-directional) leading action and not as groups of loads should use the same values of ψ factors as those adopted for the associated vertical loads		
	Nosing forces		1.00	0.80	0
	Non-public footpaths loads		0.80	0.50	0
	Real trains		1.00	1.00	0
	Horizontal earth pressure due to traffic load surcharge		0.80	c	0
	Aerodynamic effects		0.80	0.50	0
Main traffic actions (groups of loads)	gr11 (LM71+SW/0)	Max. vertical 1 with max. longitudinal	0.80	0.80	0
	gr12 (LM71+SW/0)	Max. vertical 2 with max. transverse			
	gr13 (Braking/traction)	Max. longitudinal			
	gr14 (Centrifugal/nosing)	Max. lateral			
	gr15 (Unloaded train)	Lateral stability with 'unloaded train'			
	gr16 (SW/2)	SW/2 with max. longitudinal			
	gr17 (SW/2)	SW/2 with max. transverse			
	gr21 (LM71+SW/0)	Max. vertical 1 with max. longitudinal	0.80	0.70	0
	gr22 (LM71+SW/0)	Max. vertical 2 with max. transverse			
	gr23 (Braking/traction)	Max. longitudinal			
	gr24 (Centrifugal/nosing)	Max. lateral			
	gr26 (SW/2)	SW/2 with max. longitudinal			
	gr27 (SW/2)	SW/2 with max. transverse			
	gr31 (LM71+SW/0)	Additional load cases	0.80	0.60	0
Other operating actions	Aerodynamic effects		0.80	0.50	0
	General maintenance loading for non-public footpaths		0.80	0.50	0
Wind forces ${ }^{\text {d }}$	$F_{\text {Wk }}$		0.75	0.50	0
	$F^{* *}{ }_{w}$		1.00	0	0
Thermal actions ${ }^{\text {e }}$	T_{K}		0.60	0.60	0.50
Snow loads	$Q_{\text {Sn,k}}$ (during execution)		0.80	-	0
Construction loads	Q_{C}		1.00	-	1.00
Key a If deformation is bei For seismic design st b Minimum coexistant 0.5 LM 71 , etc.	considered for persistent ations, see Table NA A2.5 avourable vertical load with	ransient design situations, ψ_{2} should be EN 1990 NA vidual components of rail traffic actions	qual trifug	or rail ion or	ctions. is
d When wind forces act simultaneously with traffic actions, the wind force $\psi_{0} F_{\mathrm{Wk}}$ should be taken as no greater than $F^{* *} \mathrm{~W}$ (see BS EN 1991-1-4). See A2.2.4(4) of BS EN 1990 e See BS EN 1991-1-5					

2.3.5 Combinations of actions

Ultimate limit states

The following ultimate limit states shall be verified as relevant:

EQU Loss of static equilibrium of the structure or any part of it considered as a rigid body.
BS EN 1990
6.4.1

STR Internal failure or excessive deformation of the structure or structural members.
GEO Failure or excessive deformation of the structure where the strengths of soil or rock are significant in providing resistance.
FAT Fatigue failure of the structure or structural members.

The partial factors and combinations of actions for these limit states are given in Tables 2.4 to 2.7.

BS EN 1990 tables NA.A.2.4(A), (B) \& (C)

Table 2.4
Recommended partial factors

Action	EQU (Set A)		STR/GEO (Set B)		STR/GEO (Set C)	
Permanent actions	$\gamma_{\text {G,sup }}$	$\gamma_{\mathrm{G}, \mathrm{inf}}$	$\gamma_{\text {G,sup }}$	$\gamma_{\text {G,inf }}$	$\gamma_{\text {G, sup }}$	$\gamma_{\text {G, inf }}$
Concrete self-weight	1.05	0.95	1.35	0.95	1.00	1.00
Steel self-weight	1.05	0.95	1.20	0.95	1.00	1.00
Superimposed dead ${ }^{\text {a }}$	1.05	0.95	1.20	0.95	1.00	1.00
Road surfacing ${ }^{\text {a }}$	1.05	0.95	1.20	0.95	1.00	1.00
Weight of soil	1.05	0.95	1.35	0.95	1.00	1.00
Self-weight of other materials listed in BS EN 1991-1-1, tables A.1-A. 6	1.05	0.95	1.35	0.95	1.00	1.00
Creep and shrinkage	-	-	1.20	0	1.00	0
Settlement (linear structural analysis)	-	-	1.20	0	1.00	0
Settlement (non-linear structural analysis)	-	-	1.35	0	1.00	0
Variable actions (γ_{Q})	Unfavourable	Favourable	Unfavourable	Favourable	Unfavourable	Favourable
Road traffic actions (gr1a, gr1b, gr2, gr5, gr6)	1.35	0	1.35	0	1.15	0
Pedestrian actions (gr3, gr4)	1.35	0	1.35	0	1.15	0
Rail traffic actions (LM71, SW/0, HSLM)	1.45	0	1.45	0	1.25	0
Rail traffic actions (SW/2 and other load models representing controlled exceptional traffic)	1.40	0	1.40	0	1.20	0
Rail traffic actions (real trains)	1.70	0	1.70	0	1.45	0
Wind actions	1.70	0	1.70	0	1.45	0
Thermal actions	1.55	0	1.55	0	1.30	0
Key a See Table NA. 1 of BS EN 1991-1-1 ${ }^{[9]}$ for guidance on thicknesses for ballast, waterproofing, surfaces and other coatings. Note For design values for self-weight of water, ground water pressure and earth pressures refer to BS EN 1997-1.						

Table 2.5
Combinations of actions for EQU, STR and GEO limit states

Persistent and transient design situation	Permanent actions		Prestress	Leading variable action	Accompanying variable actions
Exp. (6.10)	$\gamma_{\mathrm{G}, \text { sup }} G_{\mathrm{kj,sup}}$	$\gamma_{\mathrm{G}, \mathrm{inf}} G_{\mathrm{kj,inf}}$	$\gamma_{\mathrm{P}} P$	$\gamma_{\mathrm{Q}, 1} \mathrm{Q}_{\mathrm{k}, 1}$	$\gamma_{\mathrm{Q}, \mathrm{i}} \psi_{0, \mathrm{i}} \mathrm{Q}_{\mathrm{k}, \mathrm{i}}$

Note

For partial factors see Table 2.4 (except see Table 2.9 for γ_{p})

Table 2.6
Combinations for accidental situations

Accidental design situation	Permanent actions		Prestress	Accidental action	Accompanying variable actions	
	Unfavourable	Favourable			Main	Others
Exp. (6.11a/b)	$G_{k, j, \text { sup }}$	$G_{k, j, \text { inf }}$	P	$A_{\text {d }}$	$\psi_{1,1} \quad Q_{k, 1}$	$\psi_{2, i} Q_{k, i}$

Table 2.7
Combinations of fatigue actions

Action	Permanent actions		Prestress	Leading variable action	Accompanying variable actions	Fatigue action
	Favourable	Unfavourable		P	$\psi_{1,1} Q_{k, 1}$	$\psi_{2, i} Q_{k, i}$

Serviceability limit states

The combinations of actions for the serviceability limit state are given in Table 2.8.

Table 2.8
Combinations of actions for the serviceability limit state

| Combination | Permanent actions | | Prestress | Variable actions | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Favourable | Unfavourable | | Leading | Others |
| Characteristic | $G_{k, j, \text { sup }}$ | $G_{k, j, i n f}$ | P | $Q_{k, 1}$ | $\psi_{0, i} Q_{k, i}$ |
| Frequent | $G_{k, j, \text { sup }}$ | $G_{k, j, i n f}$ | P | $\psi_{1,1} Q_{k, 1}$ | $\psi_{2, i} Q_{k, i}$ |
| Quasi-permanent | $G_{k, j, \text { sup }}$ | $G_{k, j, i n f}$ | P | $\psi_{2,1} Q_{k, 1}$ | $\psi_{2, i} Q_{k, i}$ |

2.3.6 Actions to consider

Thermal effects, differential settlements/movements, creep and shrinkage should be taken into account when checking serviceability limit states.

Thermal effects, differential settlements/movements, creep and shrinkage should be considered for ultimate limit states only where they are significant (e.g. fatigue conditions, in the verification of stability where second order effects are of importance, etc.). In other cases they need not be considered, provided that the ductility and rotation capacity of the elements are sufficient.

Where thermal effects are taken into account they should be considered as variable actions and applied with a partial factor and ψ factor, which can be determined from BS EN 1990 Annex A2.

Differential settlements/movements of the structure due to soil subsidence should be classified as a permanent action, $G_{\text {set }}$ which is introduced as such in combinations of actions. A partial safety factor for settlement effects should be applied.

When creep is taken into account its design effects should be evaluated under the quasipermanent combination of actions irrespective of the design situation considered i.e. persistent, transient or accidental. In most cases the effects of creep may be evaluated under permanent loads and the mean value of prestress.

BS EN 1992-1-1
2.3.1.3(1) \& (4)

BS EN 1992-1-1
2.3.2.2(3)

The design values for vehicle impacts on supporting structures and substructures are given in BS EN 1991-1-1 ${ }^{[9]}$ section 4.3. The deisgn values for vehicle impacts on parapets are given in BS EN 1991-2 ${ }^{[9]}$ section 4.8.

Appropriate values for partial actions are given in Table 2.9

Table 2.9
Values for partial factors applied to actions

Action	Ultimate limit state					Servicability limit state	
	STR/GEO		EQU		FAT	Favourable	Unfavourable
	Favourable	Unfavourable	Favourable	Unfavourable			
Shrinkage	$\gamma_{S H}=0$	$\gamma_{\text {SH }}=1.0$	-	-	-	-	-
Prestress effects	$\gamma_{\mathrm{P}, \mathrm{fav}}=0.9$	$\gamma_{\text {P,unfav }}=1.1$	$\gamma_{P, f a v}=0.9$	$\gamma_{P, \text { unfav }}=1.2$	-	$r_{\text {inf }}=1.0$	$r_{\text {sup }}=1.0$
Fatigue	-	-	-	-	$\gamma_{\text {F,fat }}=1.0$	-	-

2.3.7 Material properties

Material properties are specified in terms of their characteristic values, which in general
correspond to a defined fractile of an assumed statistical distribution of the property

BS EN 1992-1-1 2.4.2.4(1) \& NA

The values of γ_{C} and $\gamma_{S^{\prime}}$, partial factors for materials, are indicated in Table 2.10.

Table 2.10
Partial factors for materials

Design situation	$\boldsymbol{\gamma}_{\boldsymbol{C}}$-concrete	$\boldsymbol{\gamma}_{\boldsymbol{S}}$ - reinforcing steel	$\boldsymbol{\gamma}_{\boldsymbol{S}}$ - prestressing steel
ULS - Persistent and transient	1.50	1.15	1.15
Accidental	1.20	1.00	1.00
Fatigue	1.50	1.15	1.15
SLS	1.00	1.00	1.00

2.4 Assumptions

In addition to the assumptions in BS EN 1990, it is assumed that:
■ Structures are designed by appropriately qualified and experienced personnel.

- Adequate supervision and quality control is provided.

■ Construction is carried out by personnel having the appropriate skill and experience.

- Materials and products will be used as specified in Eurocode 2 or in the relevant material or product specifications.
- The structure will be adequately maintained and will be used in accordance with the design brief.
- The requirements for execution and workmanship given in ENV 13670[10] are complied with.

At the time of writing BS EN $13670{ }^{[11]}$ is expected to be published in late 2009, and will replace ENV 13670. Once published it is anticipated that standard specifications will be updated to refer to it. In the interim existing specifications should be adapted.

2.5 Foundation design

BS EN 1997

2.4.6.4

BS EN 1997
2.1(4)

The design of concrete foundations is subject to Eurocode $7^{[12]}$ for the geotechnical aspects and to Eurocode 2 for the structural concrete design. Further guidance on the geotechnical design can be found in PD 6694-1 ${ }^{[13]}$.

Eurocode 7 is wide ranging and provides all the requirements for geotechnical design. It states that no limit state e.g. equilibrium, stability, strength or serviceability, as defined by BS EN 1990, shall be exceeded. The requirements for ULS and SLS design may be accomplished by using, in an appropriate manner, the following alone or in combination:

- Calculations.
- Prescriptive measures.
- Testing
- Observational methods.

The foundation design and the derivation of design resistance are covered by the Geotechnical Design Report. For simple structures, this report can be combined with the ground investigation report but it is still a distinct requirement. Both the ULS and SLS conditions must be met but the definition of the SLS criteria is not possible without the liaison with the bridge designer and a full Eurocode 7 compatible design cannot be carried out by a party in isolation from the rest of the structure design team.

3 Materials

3.1 Concrete

3.1.1 Strength and other properties

The compressive strength is denoted by concrete strength classes which relate to the characteristic (5\%) cylinder strength $f_{\text {ck }}$, or the cube strength $f_{\text {ck,cube, }}$, in accordance with BS EN 206-1 Concrete: Specification, performance, production and conformity ${ }^{[14]}$.

In the UK, BS 8500 ${ }^{[8]}$ complements BS EN 206-1 and the guidance given in the former should be followed.

> Concrete strength classes and properties are shown in Table 3.1. In the notation used for compressive strength class, ' C ' refers to normal weight concrete, the first number refers to the cylinder strength f_{ck} and the second to cube strength $f_{\mathrm{ck}, \text {, cube }}$

The strength classes (C) in BS EN 1992-2 are denoted by the characteristic cylinder strength f_{ck} determined at 28 days with a minimum value of $\mathrm{C} 25 / 30$ and a maximum value of $\mathrm{C} 70 / 85$. The shear strength of concrete classes higher than C50/60 should be determined by tests or limited to that of C50/60.

```
BS EN 1992-1-1 3.1.2(1)
```

```
BS EN 1992-1-1 4.4.1.2(5) \& NA
```

BS EN 1992-1-1 table 3.1

BS EN 1992-2

3.1.2 (102) \& NA

BS EN 1992-1-1
3.1.2 (2) \& NA

BS EN 1992-1-1 table 3.1

Table 3.1
Concrete strength classes and properties

Property	Strength class (MPa)										
	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	C55/67	C60/75	C70/85	C28/35 ${ }^{\text {a }}$	C32/40 ${ }^{\text {a }}$
$f_{\text {ck }}$	25	30	35	40	45	50	55	60	70	28	32
$f_{\text {ck, cube }}$	30	37	45	50	55	60	67	75	85	35	40
$f_{\text {cm }}$	33	38	43	48	53	58	63	68	78	36	40
$f_{\text {ctm }}$	2.6	2.9	3.2	3.5	3.8	4.1	4.2	4.4	4.6	2.8	3.0
$f_{\text {ctk, } 0.05}$	1.8	2.0	2.2	2.5	2.7	2.9	3.0	3.1	3.2	1.9	2.1
$f_{\text {ctk, } 0.95}$	3.3	3.8	4.2	4.6	4.9	5.3	5.5	5.7	6.0	3.6	3.9
$E_{\text {cm, }}$, GPa)	31	33	34	35	36	37	38	39	41	32	33
Key a Derived											

The value of the design compressive strength of concrete, $f_{c d}$, is defined as:
$f_{c d}=\alpha_{c c} f_{c k} / \gamma_{C}$
where
$f_{\text {ck }}=$ characteristic compressive cylinder strength of concrete at 28 days
$\gamma_{C}=$ partial factor for concrete (See Table 2.9)
$\alpha_{c c}=$ a coefficient taking account of long term effects on the compressive strength and of unfavourable effects resulting from the way the load is applied. In the UK $\alpha_{c c}$ is either 1.0 or 0.85 depending on the situation. The correct values are used in the appropriate clauses below. Generally it is 1.0 for shear and 0.85 in other circumstances
The value of concrete design tensile strength $f_{\text {ctd }}$ is defined as:
$f_{\text {ctd }}=1.0 f_{\text {ctk }, 0.05} / \gamma_{\mathrm{C}}$
where
$f_{\text {ctt, }, 0.05}=5 \%$ fractile value of axial tensile strength of concrete
Poisson's ratio may be taken equal to 0.2 for uncracked concrete and 0 for cracked concrete.

BS EN 1992-1-1 3.1.3(4)

BS EN 1992-1-1 3.1.3(5)

3.1.2 Creep

BS EN 1992-1-1
3.1.4(2)

BS EN 1992-1-1 B.1(1) $1.05 \mathrm{Ecm}_{\mathrm{cm}}$.

The creep coefficient $\varphi\left(t, t_{0}\right)$ may be obtained from Figure 3.1 of BS EN 1992-1-1, or calculated from:
$\varphi\left(t, t_{0}\right)=\varphi_{0} \beta_{c}\left(t, t_{0}\right)$
where
$\varphi_{0}=$ notional creep coefficient and may be estimated from:
$=\varphi_{\text {RH }} \beta\left(f_{c m}\right) \beta\left(t_{0}\right)$
where
$\varphi_{\text {RH }}=$ factor to allow for the effect of relative humidity on the notional creep coefficient:
$=1+\frac{1-\text { RH } / 100}{0.1 h_{0} 1 / 3}$ for $f_{\mathrm{cm}} \leq 35 \mathrm{MPa}$
$=\left[1+\frac{\alpha_{1}(1-R H / 100)}{0.1 h_{0}^{1 / 3}}\right] \alpha_{2}$ for $f_{\mathrm{cm}}>35 \mathrm{MPa}$
RH = relative humidity of the ambient environment in \%
$\beta\left(f_{c m}\right)=$ factor to allow for the effect of concrete strength on the notional creep coefficient
$=16.8 / \mathrm{fcm}^{0.5}$
$f_{\mathrm{cm}}=$ mean compressive strength of concrete in MPa at the age of 28 days
$\beta\left(t_{0}\right) \quad=$ factor to allow for the effect of concrete age at loading on the notional creep coefficient
$=1 /\left(0.1+t_{0}{ }^{0.20}\right)$
$h_{0} \quad=$ notional size of the member in mm
$=2 A_{c} / u$
$A_{c}=$ cross-sectional area
$u \quad=$ perimeter of the member in contact with the atmosphere
$\beta_{c}\left(t, t_{0}\right)=$ coefficient to describe the development of creep with time after loading
$=\left[\left(t-t_{0}\right) /\left(\beta_{H}+t-t_{0}\right)\right]^{0.3}$
where
t = age of concrete in days at the moment considered
$t_{0}=$ age of concrete at loading in days
$t-t_{0}=$ non-adjusted duration of loading in days
$\beta_{H}=$ coefficient depending on the relative humidity ($R H$ in \%) and the notional member size (h_{0} in mm)

$$
=1.5\left[1+(0.012 R H)^{18}\right] h_{0}+250 \leq 1500 \text { for } f_{c m} \leq 35 \mathrm{MPa}
$$

$$
=1.5\left[1+(0.012 R H)^{18}\right] h_{0}+250 \alpha_{3} \leq 1500 \alpha_{3} \text { for } f_{\mathrm{cm}}>35 \mathrm{MPa}
$$

$$
\alpha_{1}=\left(35 / f_{c m}\right)^{0.7}
$$

$$
\alpha_{2}=\left(35 / f_{c \mathrm{~cm}}\right)^{0.2}
$$

$$
\alpha_{3}=\left(35 / f_{\mathrm{cm}}\right)^{0.5}
$$

The effect of type of cement on the creep coefficient of concrete may be taken into account by modifying the age of loading t_{0} according to the following Expression: $t_{0}=t_{0, T}\left(9 /\left(2+t_{0, T}^{1 \cdot 2}\right)+1\right)^{a} \geq 0.5$
where
$t_{0, T}=$ temperature adjusted age of concrete at loading in days (see below)
$\alpha=$ power which depends on type of cement
$=-1$ for cement Class S (cement Class CEM 32.5N)
$=0$ for cement Class N (cement Classes 32.5R \& CEM 42.5N)
$=1$ for cement Class R (cement Classes CEM 42.5R, CEM 52.5N \& CEM 52.5R)

Cement classes can be specified using BS EN 197-1 ${ }^{[15]}$. Where the cement Class is not known, generally Class R may be assumed. Where the ground granulated blastfurnace slag (ggbs) content exceeds 35% or the fly ash content exceeds 20% of the cement combination, Class N may be assumed. Where ggbs exceeds 65% or pfa exceeds 35%, Class S maybe assumed.

The effect of elevated or reduced temperatures within the range $0-80^{\circ} \mathrm{C}$ on the maturity of concrete may be taken into account by adjusting the concrete age according to the following Expression:
$t_{\mathrm{T}}=\sum_{i=1}^{n} \mathrm{e}^{-\left(4000 /\left[273+T\left(\Delta t_{\mathrm{i}}\right)\right]-13.65\right)} \Delta t$
where
$t_{T} \quad=$ temperature-adjusted concrete age which replaces t in the corresponding equations
$T\left(\Delta t_{\mathrm{i}}\right)=$ temperature in ${ }^{\circ} \mathrm{C}$ during the time period Δt_{i}
$\Delta t_{\mathrm{i}} \quad=$ number of days where a temperature T prevails
The mean coefficient of variation of the above predicted creep data, deduced from a computerised data bank of laboratory test results, is of the order of 20%.

The creep deformation of concrete $\varepsilon_{c c}\left(\infty, t_{0}\right)$ at time $t=\infty$ for a constant compressive stress σ_{c} applied at the concrete age t_{0}, is given by:
$\varepsilon_{c c}\left(\infty, t_{0}\right)=\varphi\left(\infty, t_{0}\right)\left(\sigma_{c} / E_{c}\right)$
When the compressive stress of concrete at an age t_{0} exceeds the value $0.45 f_{c k}\left(t_{0}\right)$ then creep non-linearity should be considered. Such a high stress can occur as a result of pretensioning, e.g. in precast concrete members at tendon level. In such cases the non-linear notional creep coefficient should be obtained as follows:
$\varphi_{n 1}\left(\infty, t_{0}\right)=\varphi\left(\infty, t_{0}\right) \exp \left[1.5\left(k_{\sigma}-0.45\right)\right]$
where
$\varphi_{\mathrm{n}}\left(\infty, t_{0}\right)=$ non-linear notional creep coefficient, which replaces $\varphi\left(\infty, t_{0}\right)$
$k_{\sigma} \quad=$ stress-strength ratio $\sigma_{\mathrm{c}} / f_{c k}\left(t_{0}\right)$
$\sigma_{\mathrm{c}} \quad=$ compressive stress
$f_{c k}\left(t_{0}\right)=$ characteristic concrete compressive strength at the time of loading

3.1.3 Shrinkage

The total shrinkage strain is composed of two components, the drying shrinkage strain and the autogenous shrinkage strain. The drying shrinkage strain develops slowly, since it is a function of the migration of the water through the hardened concrete. The autogenous shrinkage strain develops during hardening of the concrete: the major part therefore develops in the early days after casting. Autogenous shrinkage is a linear function of the concrete strength. It should be considered specifically when new concrete is cast against hardened concrete.

Hence the values of the total shrinkage strain follow from:

$$
\varepsilon_{\mathrm{cs}}=\varepsilon_{\mathrm{cd}}+\varepsilon_{\mathrm{ca}}
$$

where
$\varepsilon_{\mathrm{cs}}=$ total shrinkage strain
$\varepsilon_{c d}=$ drying shrinkage strain (see Table 3.2)
$\varepsilon_{\mathrm{ca}}=$ autogenous shrinkage strain (see Table 3.2)

3.2 Steel reinforcement

BS EN 1992-1-1 table C1

BS EN 1992-2
3.2.4 \& NA

BS EN 1992-1-1
3.3.2(1)

BS EN 1992-1-1 3.3.3(1)

Long-term (70-year) shrinkage strains

Concrete strength at 28 days (f_{ck})	Strain due to drying shrinkage ($\times 10^{3}$)	Strain due to autogenous shrinkage ($\times 10^{3}$)	Total shrinkage strains ($\mathrm{x} 10^{\mathbf{3}}$)
20	0.517	0.025	0.542
25	0.489	0.038	0.527
30	0.463	0.050	0.513
35	0.438	0.063	0.501
40	0.415	0.075	0.490
45	0.393	0.088	0.481
50	0.372	0.100	0.472
60	0.333	0.125	0.458
70	0.298	0.150	0.448
Notes 1 The values shown assu 2 The drying shrinkage multiply values by 0.8	me Class R cement (Class lues assume a notional and for h_{0} of 500 mm	N and Class S will have lowe ember size, h_{0}, of 150 mm . greater, multiply values by	er values). For h_{0} of 300 mm 0.75.

Table 3.3
Properties of reinforcement

Property	Class		
	A	B	C
Characteristic yield strength f_{yk} or $f_{0.2 \mathrm{k}}(\mathrm{MPa})$	500	500	500
Minimum value of $k=\left(f_{\mathrm{t}} / f_{\mathrm{y}}\right)_{\mathrm{k}}$	≥ 1.05	≥ 1.08	$\geq 1.15<1.35$
Characteristic strain at maximum force $\varepsilon_{\mathrm{uk}}(\%)$	≥ 2.5	≥ 5.0	≥ 7.5
Note Table derived from BS EN 1992-1-1 Annex C, BS 4449: 2005 and BS EN 10080. The nomenclature used in BS 4449: 2005 differs from that used in Annex C and used here.			

Class B or Class C reinforcement should be used. For steel fabric reinforcement, Class A may also be used provided it is not taken into account in the evaluation of the ultimate resistance.

3.3 Prestressing steel

Typical prestressing strand properties are shown in Table 3.4. The manufacturer's technical data sheets should be referred for detailed information.

Properties of prestressing steels should be in accordance with EN 10138. However, until this standard is published BS $5896{ }^{[18]}$ may be used.

The 0.1% proof stress $\left(f_{p 0.1 \mathrm{k}}\right)$ and the specified value of tensile strength $\left(f_{\mathrm{pk}}\right)$ are used to define the characteristic values of the prestressing steels.

The design values for the prestressing steel are derived by dividing the characteristic values by the partial safety factor for prestressing steel γ_{S}. For ultimate limit state verification, $\gamma_{\mathrm{S}}=1.15$ for persistent and transient design situations and 1.0 for accidental design situations.

The modulus of elasticity E_{p} can be assumed equal to 205 GPa for wires and bars and 195 GPa for strand.

Table 3.4
Dimensions and properties of low relaxation strand and wire for prestressed concrete

Type of strand	Nominal diameter (mm)	Nominal tensile strength (MPa)	Steel area (mm²)	Nominal mass (g/m)	Characteristic breaking load (kN)	Characteristic 0.1\% proof load (kN)	Characteristic load at 1\% elongation (kN)
7 wire standard	15.2	1860	139	1090	259	220	228
	15.2	1670	139	1090	232	197	204
	12.5	1860	93	730	173	147	152
	12.5	1770	93	730	164	139	144
	11.0	1770	71	557	125	106	110
	9.3	1860	52	408	97	82	85
	9.3	1770	52	408	92	78	81
7 wire super	15.7	1860	150	1180	279	237	246
	15.7	1770	150	1180	265	225	233
	12.9	1860	100	785	186	158	163
	11.3	1860	75	590	139	118	122
	9.6	1860	55	432	102	87	90
	8.0	1860	38	298	70	59	61
7 wire drawn	18.0	1770	223	1750	380	323	334
	15.2	1820	165	1295	300	255	264
	12.7	1860	112	890	209	178	184

3.3.1 Relaxation of prestressing steel

BS EN 1992-1-1 defines three classes of relaxation.

BS EN 1992-1-1
3.3.2(4)

Class 1: ordinary wire and strand
Class 2: low relaxation wire and strand
Class 3: hot rolled and processed bars
The design calculation of the losses due to relaxation of the prestressing steel should be based on the loss at $1000 \mathrm{hr}\left(\rho_{1000}\right)$ after tensioning at a mean temperature of $20^{\circ} \mathrm{C}$ and initial prestress of $70 \%\left(0.7 f_{\mathrm{pk}}\right)$. The values of ρ_{1000} can be taken from the certificate or assumed to be:

Class 1 - 8\%
Class 2 - 2.5\%

BS EN 1992-1-1
3.3.2(6)

Class 3-4\%
The relaxation loss may be obtained from manufacturer's test certificates or they can be calculated, based upon the following equations (see also Table 3.5):

BS EN 1992-1-1 3.3.2(7)

Class 1

$$
\frac{\Delta \sigma_{\mathrm{pr}}}{\sigma_{\mathrm{pi}}}=5.39 \rho_{1000} \mathrm{e}^{6.7 \mu}\left(\frac{t}{1000}\right)^{0.75(1-\mu)} 10^{-5}
$$

Class 2

$$
\frac{\Delta \sigma_{\mathrm{pr}}}{\sigma_{\mathrm{pi}}}=0.66 \rho_{1000} \mathrm{e}^{9.1 \mu}\left(\frac{t}{1000}\right)^{0.75(1-\mu)} 10^{-5}
$$

Class 3

$$
\frac{\Delta \sigma_{\mathrm{pr}}}{\sigma_{\mathrm{pi}}}=1.98 \rho_{1000} \mathrm{e}^{8 \mu}\left(\frac{t}{1000}\right)^{0.75(1-\mu)} 10^{-5}
$$

where
$\Delta \sigma_{\mathrm{pr}}=$ absolute value of the relaxation losses of the prestress
$\sigma_{\mathrm{pi}} \quad=$ absolute value of the initial prestress
$=\sigma_{\text {pmo }}$ for post-tensioning (see Section 11.3.2)
= maximum tensile stress applied to the tendon minus the immediate losses occurring during the stressing process for pre-tensioning (see Section 11.3.3)
$t \quad=$ time after tensioning (in hours)
$\mu \quad=\sigma_{\mathrm{pi}} I f_{\mathrm{pk}}$, where f_{pk} is the characteristic value of the tensile strength of the prestressing steel
$\rho_{1000}=$ value of relaxation loss (\%), at 1000 hours after tensioning and at a mean temperature of $20^{\circ} \mathrm{C}$

BS EN 1992-1-1

3.3.2(8)

BS EN 1992-1-1
 3.3.2(9)

The long-term (final) values of the relaxation losses may be estimated from $t=500,000$ hours.

Relaxation losses are very sensitive to temperature of the steel where heat treatment is applied (e.g. by steam) (see BS EN 1992-1-1 Cl. 10.3.2.1). Otherwise where the temperature is greater than $50^{\circ} \mathrm{C}$, the relaxation losses should be verified.

Table 3.5
Relaxation losses based on using Expressions (3.28 to 3.30) in BS EN 1992-1-1

Class	$\rho_{1000}(\%)$	$\boldsymbol{\mu}=\sigma_{\mathrm{pi}} / f_{\mathrm{pk}}$	t (hours)	$\Delta \sigma_{\mathrm{pr}} / \sigma_{\mathrm{pi}} \%$
1	8	0.80	500,000	23.3
		0.76		21.5
		0.72		19.8
		0.68		18.2
		0.64		16.8
		0.60		15.5
2	2.5	0.80		6.1
		0.76		5.1
		0.72		4.3
		0.68		3.6
		0.66		3.0
		0.60		2.5
3	4	0.80		12.1
		0.76		10.6
		0.72		9.3
		0.68		8.1
		0.64		7.1
		0.60		6.2

Relaxation losses are sensitive to variations in stress levels over time and can therefore be reduced by taking into consideration of other time-dependent losses occurring within the structure at the same time (such as creep and shrinkage). Previous UK practice is to base design on the relaxation loss of 1000 hours without considering the interaction with creep and shrinkage.

4 Durability and cover

4.1 General

A durable structure shall meet the requirements of serviceability, strength and stability throughout its design working life, without significant loss of utility or excessive unforeseen maintenance.

In order to achieve the required design working life of the structure, adequate measures shall be taken to protect each structural element against the relevant environmental actions. Exposure conditions are chemical and physical conditions to which the structure is exposed in addition to mechanical actions.

Requirements of durability should be considered at all stages of design and construction, including the selection of materials, construction details, execution and quality control.

Half-joints should not be used in bridges unless there are adequate provisions for inspection and maintenance. Water penetration or the possibility of leakage from the carriageway into the inside of voided structures should be considered in the design. For concrete surfaces protected by waterproofing the exposure class is XC3 .

Where de-icing salt is used, all exposed concrete surfaces within 10 m of the carriageway horizontally or within 5 m above the carriageway should be considered as being directly affected by de-icing salts. Top surfaces of supports under expansion joints should also be considered as being directly affected by de-icing salts. The exposure classes for surfaces directly affected by de-icing slats are XD3 and XF2 or XF4 as appropriate.

Adequate cover is required to ensure safe transmission of bond forces (see Section 4.2) and protection of steel against corrosion (see Sections 4.3 and 4.4).

The concrete cover to reinforcement is the distance from the outer surface of the reinforcement to the nearest concrete surface. Drawings should specify the nominal cover. As illustrated in Figure 4.1, the nominal cover should satisfy the minimum requirements in respect of bond and durability, and allow for the deviation to be expected in execution (see Section 4.5).

BS EN 1992-1-1
4.1

BS EN 1992-1-1 4.3(1), 4.2(1)

BS EN 1992-1-1 4.3(2)

BS EN 1992-2 4.2(104), (105) \& NA,
PD 6687-2 5.1

BS EN 1992-2 4.2(106) \& NA

BS EN 1992-1-1 4.4.1.2(1)

Figure 4.1 Determination of cover

4.2 Cover for bond, $c_{\text {min, }}$

BS EN 1992-1-1
4.4.1.2(3) \& NA

BS EN 1992-1-1 table 4.2

In order to transmit bond forces safely and to ensure adequate compaction, the minimum cover should not be less than $c_{\text {min, }}$ in Table 4.1.

Table 4.1
Minimum cover, $c_{\min , b}$, requirements for bond

Reinforcement type and arrangement	$\boldsymbol{c}_{\text {min,b }}$
Individual bars	Diameter of bar, $\boldsymbol{\phi}$
Bundled bars	Equivalent diameter of bars, $\boldsymbol{\phi}_{\mathrm{n}}$
Post-tensioned circular ducts	Diameter of duct or 80 mm whichever is smaller
Post-tensioned rectangular ducts	Smaller dimension or half greater dimension whichever is greater, but not more than 80 mm
Pre-tensioned strand or wire	1.5 times the diameter
Pre-tensioned indented wire	2.5 times the diameter

4.3 Cover for durability, $c_{\text {min,dur }}$

Environmental conditions are classified according to Table 4.2, which is based on BS 8500 . Concrete composition and minimum covers required for durability in different environmental conditions are set out in Table 4.3, derived from $\mathrm{BS} 8500^{[8]}$. These tables give recommendations for normal weight concrete using maximum aggregate size of 20 mm for selected exposure classes and cover to reinforcement.

In accordance with BS 8500, special attention should be given to the concrete composition and aggregates, when considering freeze/thaw attack, chemical attack or abrasion resistance.

Table 4.2

| Class | Class description | Informative example applicable to the United Kingdom |
| :--- | :--- | :--- | :--- |
| No risk of corrosion or attack (X0 class) | | |
| X0 | For concrete without
 reinforcement or embedded
 metal all exposures except
 where there is freeze/thaw,
 abrasion or chemical attack. | Unreinforced concrete surfaces inside structures. Unreinforced concrete completely buried in soil
 classed as AC-1 and with hydraulic gradient not greater than 5. Unreinforced concrete permanently
 submerged in non-aggressive water. Unreinforced concrete in cyclic wet and dry conditions not
 subject to abrasion, freezing or chemical attack.
 Note: For reinforced concrete, use at least XC1. |
| Corrosion induced by carbonation (XC classes)a | | |
| (Where concrete containing reinforcement or other embedded metal is exposed to air and moisture) | | |

Table 4.2
Exposure Classes (continued)

Class	Class description	Informative example applicable to the United Kingdom
Corrosion induced by chlorides other than from sea water (XD classes) ${ }^{\text {a }}$ (Where concrete containing reinforcement or other embedded metal is subject to contact with water containing chlorides, including de-icing salts, from sources other than from sea water)		
XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides. Reinforced and prestressed concrete wall and structure supports more than 10 m horizontally from a carriageway. Bridge deck soffits more than 5 m vertically above the carriageway. Parts of structures exposed to occasional or slight chloride conditions.
XD2	Wet, rarely dry.	Reinforced and prestressed concrete surfaces totally immersed in water containing chlorides ${ }^{\text {b }}$. Buried highway structures more than 1 m below adjacent carriageway.
XD3	Cyclic wet and dry.	Reinforced and prestressed concrete surfaces directly affected by de-icing salts or spray containing de-icing salts (e.g. walls; abutments and columns within 10 m of the carriageway; parapet edge beams and buried structures less than 1 m below carriageway level, pavements and car park slabs).
Corrosion induced by chlorides from sea water (XS classes) a (Where concrete containing reinforcement or other embedded metal is subject to contact with chlorides from sea water or air carrying salt originating from sea water)		
XS1	Exposed to airborne salt but not in direct contact with sea water.	External reinforced and prestressed concrete surfaces in coastal areas.
XS2	Permanently submerged.	Reinforced and prestressed concrete completely submerged and remaining saturated, e.g. concrete below mid-tide level ${ }^{\text {b }}$.
XS3	Tidal, splash and spray zones.	Reinforced and prestressed concrete surfaces in the upper tidal zones and the splash and spray zones ${ }^{\text {c }}$.
Freeze/thaw attack (XF classes) (Where concrete is exposed to significant attack from freeze/thaw cycles whilst wet)		
XF1	Moderate water saturation without de-icing agent.	Vertical concrete surfaces such as facades and columns exposed to rain and freezing. Non-vertical concrete surfaces not highly saturated, but exposed to freezing and to rain or water.
XF2	Moderate water saturation with de-icing agent.	Concrete surfaces such as parts of bridges, which would otherwise be classified as XF1 but which are exposed to de-icing salts either directly or as spray or run-off.
XF3	High water saturation without de-icing agent.	Horizontal concrete surfaces, such as parts of buildings, where water accumulates and which are exposed to freezing. Concrete surfaces subjected to frequent splashing with water and exposed to freezing.
XF4	High water saturation with de-icing agent or sea water ${ }^{\text {d }}$.	Horizontal concrete surfaces, such as roads and pavements, exposed to freezing and to de-icing salts either directly or as spray or run-off. Concrete surfaces subjected to frequent splashing with water containing de-icing agents and exposed to freezing.
Chemical attack (ACEC classes) (Where concrete is exposed to chemical attack. Note: BS 8500-1 refers to ACEC classes rather than XA classes used in BS EN 206-1)		

Refer to Section 4.4

Key

a The moisture condition relates to that in the concrete cover to reinforcement or other embedded metal but, in many cases, conditions in the concrete cover can be taken as being that of the surrounding environment. This might not be the case if there is a barrier between the concrete and its environment.
b Reinforced and prestressed concrete elements, where one surface is immersed in water containing chlorides and another is exposed to air, are potentially a more severe condition, especially where the dry side is at a high ambient temperature. Specialist advice should be sought where necessary, to develop a specification that is appropriate to the actual conditions likely to be encountered.
c Exposure XS3 covers a range of conditions. The most extreme conditions are in the spray zone. The least extreme is in the tidal zone where conditions can be similar to those in XS2. The recommendations given take into account the most extreme UK conditions within this class
d It is not normally necessary to classify in the XF4 exposure class those parts of structures located in the United Kingdom which are in frequent contact with the sea

Table 4.3
Selected ${ }^{\text {a }}$ recommendations for normal-weight reinforced concrete quality for combined exposure classes and cover to reinforcement

Exposure conditions			Cement/ combination designations ${ }^{\text {b }}$	Minimum strength class ${ }^{\text {c }}$, maximum w/c ratio, minimum cement or combination						
Typical example	Primary	Secondary		At least 50-year working life						
				Nominal cover to reinforcement ${ }^{\text {d }}$						
				$15+\Delta c_{\text {dev }}$	$20+\Delta c_{\text {dev }}$	$25+\Delta c_{\text {dev }}$	$30+\Delta c_{\text {dev }}$	$35+\Delta c_{\text {dev }}$	$40+\Delta c_{\text {dev }}$	$45+\Delta c_{\text {dev }}$
Internal elements or permanently wet elements	XC1	-	All	$\begin{aligned} & \text { C20/25, } \\ & 0.70,240 \\ & \text { or RC20/25 } \end{aligned}$	<<<	<<<	<<<	<<<	<<<	<<<
Buried concrete in $\mathrm{AC}-1$ ground conditions ${ }^{e}$	XC2	AC-1	All	-	-	$\begin{aligned} & C 25 / 30 \text {, } \\ & 0.65,260 \text { or } \\ & R C 25 / 30 \end{aligned}$	<<<	<<<	<<<	<<<
Vertical surface protected from direct rainfall	XC3/4	-	All except IVB-V	-	$\begin{aligned} & \text { C40/50, } \\ & 0.45,340 \\ & \text { or RC40/50 } \end{aligned}$	$\begin{aligned} & C 30 / 37, \\ & 0.55,300 \\ & \text { or RC30/37 } \end{aligned}$	$\begin{aligned} & C 28 / 35, \\ & 0.60,280 \\ & \text { or RC28/35 } \end{aligned}$	$\begin{aligned} & C 25 / 30, \\ & 0.65,260 \\ & \text { or RC25/30 } \end{aligned}$	<<<	<<<
Vertical surface exposed to rain and freezing		XF1	All except IVB-V	-	$\begin{aligned} & C 40 / 50 \\ & 0.45,340 \\ & \text { or RC40/50 } \end{aligned}$	$\begin{aligned} & C 30 / 37, \\ & 0.55,300 \\ & \text { or RC30/37 } \end{aligned}$	$\begin{aligned} & C 28 / 35, \\ & 0.60,280 \\ & \text { or RC28/35 } \end{aligned}$	<<<	<<<	<<<
Exposed horizontal surfaces		XF3	All except IVB-V	-	$\begin{aligned} & C 40 / 50,0.45, \\ & 340^{\mathrm{g}} \text { or } \\ & \text { RC40/50XFg } \end{aligned}$	<<<	<<<	<<<	<<<	<<<
		XF3 (air entrained)	All except IVB-V	-	-	$\begin{aligned} & \text { C30/37, } \\ & 0.55,300 \text { g.h } \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.60,280 \mathrm{~g}, \mathrm{~h} \\ & \text { or PAV2 } \end{aligned}$	$\begin{aligned} & \text { C25/30, } \\ & 0.60,280 \mathrm{~g}, \mathrm{~h}, \mathrm{j} \\ & \text { or PAV1 } \end{aligned}$	<<<	<<<
Elements subject to airborne chlorides	XD1 ${ }^{\text {f }}$	XF1	All	-	-	$\begin{aligned} & \text { C40/50, } \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.55,320 \end{aligned}$	$\begin{aligned} & C 28 / 35, \\ & 0.60,300 \end{aligned}$	<<<	<<<
Exposed vertical surfaces near coast	XS1 ${ }^{\text {f }}$	XF1	CEM I, IIA, IIB-S, SRPC	-	-	-	See BS 8500	$\begin{aligned} & \text { C35/45, } \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.50,340 \end{aligned}$	<<<
			IIB-V, IIIA	-	-	-	$\begin{aligned} & \text { See } \\ & \text { BS } 8500 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.55,320 \end{aligned}$
		-	IIIB	-	-	-	$\begin{aligned} & \text { C32/40, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 25 / 30, \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & \text { C25/30, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.55,320 \end{aligned}$
Exposed horiz. surfaces near coast		$\begin{aligned} & \text { XF3 or } \\ & \text { XF4 } \end{aligned}$	CEM I, IIA, IIB-S, SRPC	-	-	-	See BS 8500	$\begin{aligned} & \text { C40/50, } \\ & 0.45,360 \mathrm{~g} \end{aligned}$	<<<	<<<
Elements submerged in water containing chlorides	$\begin{aligned} & \text { XD2 or } \\ & \text { XS2 } \end{aligned}$	-	CEM I, IIA, IIB-S, SRPC	-	-	-	$\begin{aligned} & C 40 / 50 \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 28 / 35 \\ & 0.55,320 \end{aligned}$	<<<
			IIB-V, IIIA	-	-	-	$\begin{aligned} & \text { C35/45, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & \text { C25/30, } \\ & 0.55,320 \end{aligned}$	<<<
			IIIB, IVB-V	-	-	-	$\begin{aligned} & \text { C32/40, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 25 / 30, \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 20 / 25, \\ & 0.55,320 \end{aligned}$	<<<
Elements subject to moderate water saturation with de-icing agent and freezing	XD3 ${ }^{\text {f }}$	XF2	IIB-V, IIIA	-	-	-	-	-	$\begin{aligned} & \text { C35/45, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.45,360 \end{aligned}$
			CEM I, IIA, IIB-S, SRPC	-	-	-	-	-	See BS 8500	$\begin{aligned} & \text { C40/50, } \\ & 0.40,380 \end{aligned}$
			IIIB, IVB-V	-	-	-	-	-	$\begin{aligned} & C 32 / 40, \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 32 / 40 \\ & 0.45,360 \end{aligned}$
Elements subject to water saturation with de-icing agent and freezing		XF4 ${ }^{\text {k }}$	IIB-V, IIIA	-	-	-	-	-	$\begin{aligned} & \text { C40/50, } \\ & 0.45,380 \mathrm{~g} \end{aligned}$	$\begin{aligned} & C 40 / 50, \\ & 0.45,360 \mathrm{~g} \end{aligned}$
		XF4 (air entrained)	CEM I, IIA, IIB-S, SRPC	-	-	-	-	-	See BS 8500	$\begin{aligned} & \text { C28/35, } \\ & 0.40,380^{g} \end{aligned}$
			IIB-V, IIIA	-	-	-	-	-	$\begin{aligned} & C 28 / 35 \\ & 0.40,380^{\mathrm{g} . \mathrm{h}} \end{aligned}$	$\begin{aligned} & C 28 / 35 \\ & 0.45,360 \text { g.h } \end{aligned}$
Elements in tidal, splash and spray zones	XS3	-	CEM I, IIA, IIB-S, SRPC	-	-	-	-	-	-	See BS 8500
			IIB-V, IIIA	-	-	-	-	-	$\begin{aligned} & \text { C35/45, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.45,360 \end{aligned}$
			IIIB, IVB-V	-	-	-	-	-	$\begin{aligned} & \text { C32/40, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 28 / 35, \\ & 0.45 .360 \end{aligned}$

Key

a This table comprises a selection of common exposure class combinations. Requirements for other sets of exposure classes, e.g. XD2, XS2 and XS3 should be derived from BS 8500-1:
b See Table 4.4 (CEM I is Portland cement, IIA to IVB are cement/combinations.)
c For prestressed concrete the minimum strength class should be C28/35.
d $\Delta c_{\text {dev }}$ is an allowance for deviations.
for either at least a 50-year or 100-year intended working life and $\mathbf{2 0} \mathbf{~ m m}$ maximum aggregate size
content ($\mathrm{kg} / \mathrm{m}^{3}$), and equivalent designated concrete where applicable

	Nominal cover to reinforcement ${ }^{\text {d }}$									
$50+\Delta c_{\text {dev }}$	$15+\Delta c_{\text {dev }}$	$25+\Delta c_{\text {dev }}$	$30+\Delta c_{\text {dev }}$	$35+\Delta c_{\text {dev }}$	$40+\Delta c_{\text {dev }}$	$45+\Delta c_{\text {dev }}$	$50+\Delta c_{\text {dev }}$	$55+\Delta c_{\text {dev }}$	$60+\Delta c_{\text {dev }}$	$65+\Delta c_{\text {dev }}$
<<<	$\begin{aligned} & \text { C20/25, } \\ & 0.70,240 \\ & \text { RC20/25 } \end{aligned}$	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<
<<<	-	$\begin{aligned} & C 25 / 30 \\ & 0.65,260 \\ & R C 25 / 30 \end{aligned}$	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<
<<<	-	-	$\begin{aligned} & \text { C40/50, } \\ & 0.45,340 \\ & \text { RC } 40 / 50 \end{aligned}$	$\begin{aligned} & C 35 / 45, \\ & 0.50,320 \\ & \text { RC35/45 } \end{aligned}$	$\begin{aligned} & C 30 / 37, \\ & 0.55,300 \\ & \text { RC30/37 } \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.60,280 \\ & \text { RC28/35 } \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.65,260 \\ & \text { RC25/30 } \end{aligned}$	<<<	<<<	<<<
<<<	-	-	$\begin{aligned} & \text { C40/50, } \\ & 0.45,340 \\ & \text { RC40/50 } \end{aligned}$	$\begin{aligned} & C 35 / 45, \\ & 0.50,320 \\ & \text { RC35/45 } \end{aligned}$	$\begin{aligned} & \text { C30/37, } \\ & 0.55,300 \\ & \text { RC30/37 } \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.60,280 \\ & \text { RC28/35 } \end{aligned}$	<<<	<<<	<<<	<<<
<<<	-	-	$\begin{aligned} & \text { C40/50, } \\ & 0.45,340^{g} \\ & \text { RC40/50 } \end{aligned}$	<<<	<<<	<<<	<<<	<<<	<<<	<<<
<<<	-	-	-	$\begin{aligned} & \text { C35/45, 0.50, } \\ & 320 \mathrm{~g}, \mathrm{~h} \end{aligned}$	$\begin{aligned} & C 30 / 37,0.55, \\ & 300 \mathrm{~g}, \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { C28/35, 0.60, } \\ & 280^{g}, \mathrm{~h} \\ & \text { or PAV2 } \end{aligned}$	$\begin{aligned} & C 25 / 300.60, \\ & 280^{\mathrm{g}, \mathrm{~h}, \mathrm{j}} \\ & \text { or PAV1 } \end{aligned}$	<<<	<<<	<<<
<<<	-	-	$\begin{aligned} & \text { C45/55, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 40 / 50 \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & \text { C35/45, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.55,320 \end{aligned}$	$\begin{aligned} & C 28 / 35, \\ & 0.60,300 \end{aligned}$	<<<	<<<	<<<
<<<	-	-	-	-	-	See BS 8500	$\begin{aligned} & C 40 / 50 \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & \text { C35/45, } \\ & 0.45,360 \end{aligned}$	<<<	<<<
<<<	-	-	-	$\begin{aligned} & \text { C35/45, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 32 / 40, \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.55,320 \end{aligned}$	<<<	<<<	<<<
<<<	-	-	-	$\begin{aligned} & \text { C35/45, } \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & C 30 / 37, \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.55,320 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.55,320 \end{aligned}$	<<<	<<<	<<<
<<<	-	-	-	-	-	See BS 8500	$\begin{aligned} & C 40 / 50, \\ & 0.40,380 \mathrm{~g} \end{aligned}$	<<<	<<<	<<<
<<<	-	-	-	-	$\begin{aligned} & C 35 / 45, \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 28 / 35 \\ & 0.55,320 \end{aligned}$	<<<	<<<	<<<
<<<	-	-	-	-	$\begin{aligned} & C 32 / 40 \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.55,320 \end{aligned}$	<<<	<<<	<<<
<<<	-	-	-	-	$\begin{aligned} & C 28 / 35, \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 20 / 25, \\ & 0.55,320 \end{aligned}$	<<<	<<<	<<<
$\begin{aligned} & \text { C32/40, } \\ & 0.50,340 \end{aligned}$	-	-	-	-	-	See BS 8500	$\begin{aligned} & \text { C35/45, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 32 / 40, \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & C 28 / 35 \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.55320 \end{aligned}$
$\begin{aligned} & \text { C35/45, } \\ & 0.45,360 \end{aligned}$	-	-	-	-	-	-	-	See BS 8500	$\begin{aligned} & C 40 / 50 \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 35 / 45, \\ & 0.45,360 \end{aligned}$
$\begin{aligned} & C 32 / 40, \\ & 0.50,340 \end{aligned}$	-	-	-	-	-	$\begin{aligned} & \text { C32/40, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 28 / 35, \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.50,340 \end{aligned}$	<<<	<<<
$\begin{aligned} & \text { C40/50, } \\ & 0.45,340 \end{aligned}$	-	-	-	-	-	See BS 8500	$\begin{aligned} & C 40 / 50 \\ & 0.40,380 \mathrm{~g} \end{aligned}$	$\begin{aligned} & C 40 / 50, \\ & 0.45,360^{\mathrm{g}} \end{aligned}$	$\begin{aligned} & C 40 / 50 \\ & 0.45,340 \mathrm{~g} \end{aligned}$	$\begin{aligned} & C 40 / 50, \\ & 0.45,340 \mathrm{~g} \end{aligned}$
$\begin{aligned} & C 28 / 35 \\ & 0.45,360^{g} \end{aligned}$	-	-	-	-	-	-	-	$\begin{aligned} & \text { See } \\ & \text { BS } 8500 \end{aligned}$	$\begin{aligned} & C 28 / 35, \\ & 0.40,380 \mathrm{~g} \end{aligned}$	$\begin{aligned} & C 28 / 35, \\ & 0.45,360 \mathrm{~g} \end{aligned}$
$\begin{aligned} & \text { C28/35, } \\ & 0.50,340 \mathrm{~g}, \mathrm{~h} \end{aligned}$	-	-	-	-	-	See BS 8500	$\begin{aligned} & \text { C28/35, } \\ & 0.40,380^{\mathrm{g} . \mathrm{h}} \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.45,360^{\mathrm{g} . \mathrm{h}} \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.50,340 \mathrm{~g}, \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.55,320 \mathrm{~g} . \mathrm{h} \end{aligned}$
$\begin{aligned} & \text { C40/50, } \\ & 0.40,380 \end{aligned}$	-	-	-	-	-	-	-	-	See BS 8500	$\begin{aligned} & \text { C40/50, } \\ & 0.40,380 \end{aligned}$
$\begin{aligned} & \text { C28/35, } \\ & 0.50,340 \end{aligned}$	-	-	-	-	-	See BS 8500	$\begin{aligned} & C 35 / 45, \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & \text { C32/40, } \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & \text { C28/35, } \\ & 0.50,340 \end{aligned}$	$\begin{aligned} & C 25 / 30, \\ & 0.55,320 \end{aligned}$
$\begin{aligned} & C 25 / 30, \\ & 0.50,340 \end{aligned}$	-	-	-	-	-	$\begin{aligned} & \text { C32/40, } \\ & 0.40,380 \end{aligned}$	$\begin{aligned} & C 28 / 35 \\ & 0.45,360 \end{aligned}$	$\begin{aligned} & C 25 / 30 \\ & 0.50,340 \end{aligned}$	<<<	<<<
e For sectio BS 8500. f Also adeq g Freeze/th specified.	ns less than uate for exp aw resisting	140 mm thic sure class XC ggregates sh	refer to 3/4. uld be	h Air entrained concrete is required. j This option may not be suitable for areas subject to severe abrasion. k Not recommended for pavements and hardstandings - see BS 8500-1, A.4.3.			$\begin{array}{cl} - & \text { Not } \\ \lll & \text { Indic } \end{array}$	recommend cates that left should n	crete quality t be reduced	in cell to

Table 4.4
Cement and combination type ${ }^{\text {a }}$

Broad designation	Composition	Cement/combination types (BS 8500)
CEM I	Portland cement	CEM I
SRPC	Sulfate-resisting Portland cement Portland cement with 6-20\% fly ash, ground granulated blastfurnace slag, limestone, or 6-10\% silica fume	CEM II/A-L, CEM II/A-LL, CIIA-L, CIIA-LL, CEM II/A-S, CIIA-S, CEM II/A-V, CIIA-V, CEM II/A-D
IIA	Portland cement with 21-35\% ground granulated blastfurnace slag	CEM II/B-S, CIIB-S
IIB-S	Portland cement with 21-35\% fly ash	
IIB-V	Portland cement with 25-35\% fly ash	CEM II/B-V, CIIB-V
IIB+SR	Clastfurnace slag	CEM II/B-V+SR, CIIB-V+SR

4.4 Chemical attack

Where plain or reinforced concrete is in contact with the ground, further checks are required to achieve durability. An aggressive chemical environment for concrete class (ACEC class) should be assessed for the site. BRE Special Digest ${ }^{[19]}$ gives guidance on the assessment of the ACEC class and this is normally carried out as part of the interpretive reporting for a ground investigation. Knowing the ACEC class, a design chemical class (DC class) can be obtained from Table 4.5. In general, fully buried concrete in the UK need not be designed to be freeze-thaw resisting.

For designated concretes, an appropriate foundation concrete (FND designation) can be selected using Table 4.6. An FND concrete has the strength class of C25/30. Where a higher strength is required, either for its strength or where the foundation is classified as XD2 or XD3, a designed concrete should be specified. For designed concretes, the concrete producer should be advised of the DC-class.

4.5 $\Delta c_{\text {dev }}$ and other allowances

To calculate the nominal cover, $\mathrm{c}_{\text {nom }}$, an addition to the minimum cover shall be made in design to allow for the deviation $\left(\Delta c_{\text {dev }}\right)$. In the UK the recommended value is 10 mm . In certain situations the accepted deviation and hence allowance $\Delta c_{\text {dev }}$ may be reduced:

- Where fabrication is subjected to a quality assurance system, in which the monitoring includes measurements of the concrete cover, the allowance in design for deviation Δc_{dev} may be reduced: $10 \mathrm{~mm} \geq \Delta c_{\text {dev }} \geq 5 \mathrm{~mm}$
- Where it can be assured that a very accurate measurement device is used for monitoring, and non-conforming members are rejected (e.g. precast elements), the allowance in design for deviation $\Delta c_{\text {dev }}$ may be reduced: $10 \mathrm{~mm} \geq \Delta c_{\text {dev }} \geq 0 \mathrm{~mm}$

```
\Delta\mp@subsup{c}{\mathrm{ dev }}{}}\mathrm{ is recognised in BS 8500 as }\Delta
```

The minimum cover for concrete cast on prepared ground (including blinding) is 40 mm and
BS EN 1992-1-1 4.4.1.3(4) \& NA

BS EN 1992-1-1 4.4.1.2(11) 5 mm .

Table 4.5
Selection of the DC-class and the number of additional protection measures (APMs) where the hydrostatic head of groundwater is not more than five times the section width ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}}$

ACEC-class (aggressive chemical environment for concrete class)	Intended working life	
	At least 50 years	At least 100 years
AC-1s, AC-1	DC-1	DC-1
AC-2s, AC-Z	DC-2	DC-2
AC-2z	DC-2z	DC-2z
AC-3s	DC-3	DC-3
AC-3z	DC-3z	DC-3z
AC-3	DC-3	Refer to BS 8500
AC-4s	DC-4	DC-4
AC-4z	DC-4z	DC-4z
AC-4	DC-4	Refer to BS 8500
AC-4ms	DC-4m	DC4m
AC-4m	DC-4m	Refer to BS 8500
AC-5	DC-4 ${ }^{\text {f }}$	DC-4 ${ }^{\text {f }}$
AC-5z	DC-4z ${ }^{\text {f }}$	DC-4z/1 ${ }^{\text {f }}$
AC-5m	DC-4m ${ }^{\text {f }}$	DC-4m ${ }^{\text {f }}$

Key

a Where the hydrostatic head of groundwater is greater than five times the section width, refer to BS 8500.
b For guidance on precast products see Special Digest 1 [19]
c For structural performance outside these values refer to BS 8500 .
d For section widths < 140 mm refer to BS 8500 .
e Where any surface attack is not acceptable e.g. with friction piles, refer to BS 8500 .
f This should include APM3 (surface protection), where practicable, as one of the APMs; refer to BS 8500.

$\begin{aligned} & \text { BS } 8500 \\ & \text { table A. } 1 \end{aligned}$	Table 4.6 Guidance on selecting designated concrete for reinforced concrete foundations	
	DC-Class	Appropriate designated concrete
	DC-1	RC 25/30
	DC-2	FND2
	DC-2z	FND2z
	DC-3	FND3
	DC-3z	FND3z
	DC-4	FND4
	DC-4z	FND4z
	DC-4m	FND4m
	Note Strength class for all FND concrete is C25/30.	

Bare concrete decks of road bridges, without waterproofing or surfacing, should be classified as Abrasion Class XM2.

Where a concrete surface is subject to abrasion caused by ice or solid transportation in running water, the cover should be increased by a minimum of 10 mm .

5 Structural analysis

5.1 General

The purpose of structural analysis is to establish the distribution of either internal forces and moments or stresses, strains and displacements over the whole or part of a structure. Additional local analysis shall be carried out where necessary.

When designing a bridge deck slab of box beam or beam and slab construction, it is necessary to consider, in addition to overall global effects, the local effects induced in the top slab by wheel loads. Current practice is to use elastic analysis and often assume full fixity at the slab and web junctions and use either Pucher's influence surfaces, Westergaard's equations, or FE analysis.

5.2 Idealisation of the structure

5.2.1 Definitions

For bridge structures the following can be applied:

- A beam is a member for which the span is not less than three times its depth. If not, it is a deep beam.
- A slab is a member for which the minimum panel dimension is not less than five times the overall thickness.
- A one-way spanning slab has either two approximately parallel unsupported edges or, when supported on four edges, the ratio of the longer to shorter span exceeds 2.0.
- A column is a member for which the section depth does not exceed four times its width and the height is at least three times the section depth. If not, it is a wall.

5.2.2 Effective flange width

The effective width of a flange, $b_{\text {eff }}$, should be based on the distance, l_{0}, between points of zero moments as shown in Figure 5.1 and defined in Figure 5.2.
$b_{\text {eff }}=b_{\mathrm{w}}+b_{\text {eff }, 1}+b_{\text {eff }, 2}$
where
$b_{\text {eff }, 1}=\left(0.2 b_{1}+0.1 l_{0}\right)$ but $\leq 0.2 l_{0}$ and $\leq b_{1}$
$b_{\text {eff }, 2}=$ to be calculated in a similar manner to $b_{\text {eff }, 1}$ but b_{2} should be substituted for b_{1} in the above

BS EN 1992-1-1
5.3.1

BS EN 1992-1-1
5.3.2.1(2)\&(3)

BS EN 1992-1-1
fig. 5.2

Figure 5.1
Elevation showing definition of 10 for calculation of flange width

5.2.3 Effective span

BS EN 1992-1-1 5.3.2.2(1)

The effective span, $l_{\text {eff }}$ of a member should be calculated as follows:
$l_{\text {eff }}=l_{\mathrm{n}}+a_{1}+a_{2}$
where
$I_{\mathrm{n}}=$ clear distance between the faces of the supports; values for a_{1} and a_{2}, at each end of the span, may be determined from the appropriate a_{i} values in Figure 5.3 where t is the width of the supporting element as shown.

Figure 5.2
Section showing effective flange width parameters

Figure 5.3
Effective span, $l_{\text {eff }}$, for different support conditions

5.3 Methods of analysis

5.3.1 Ultimate limit states (ULS)

Abstract

The type of analysis should be appropriate to the problem being considered. The following are commonly used: linear elastic analysis, linear elastic analysis with limited redistribution, and plastic analysis.

For determination of the action effects, linear elastic analysis may be carried out assuming:

- Uncracked cross-sections.
- Linear stress-strain relationships.
- The use of mean values of elastic modulus.

If a linear elastic analysis with limited redistribution is undertaken, shears and reactions used in the design should be taken as those either prior to redistribution or after redistribution, whichever is greater.

In continuous beams or slabs which:

- Are predominantly subject to flexure
- Have the ratio of lengths of adjacent spans in the range of 0.5 to 2.0
redistribution of bending moment may be carried out without explicit check on the rotation capacity provided that:
$\delta \geq 0.44+1.25\left(0.6+0.0014 / \varepsilon_{\mathrm{cuz}}\right) x_{\mathrm{u}} / d \quad$ for $f_{\mathrm{ck}} \leq 50 \mathrm{MPa}$
$\delta \geq 0.54+1.25\left(0.6+0.0014 / \varepsilon_{\mathrm{cu} 2}\right) x_{u} / d \quad$ for $f_{\mathrm{ck}}>50 \mathrm{MPa}$
$\delta \geq 0.85$ where Class B and Class C reinforcement is used
where
$\delta=$ the ratio of the redistributed moment to the moment in the linear elastic analysis
$x_{u}=$ the depth of the neutral axis at the ultimate limit state after redistribution
$d=$ the effective depth of the section
Redistribution should not be carried out in circumstances where the rotation capacity cannot be defined with confidence (e.g. in curved and or skewed bridges).

It is recommended that moment redistribution is not used for sections deeper than 1.2 m unless a rigorous analysis of rotation capacity is undertaken.

The following rules may be used for solid concrete slabs with $f_{c k} \leq 50 \mathrm{MPa}$.
$\delta \geq 0.4+1.0 x_{\mathrm{u}} / d \geq 0.7$ where the reinforcement is Class B or Class C
No redistribution is allowed for Class A reinforcement.
Where used, plastic analysis should be based either on static (lower bound) or kinematic (upper bound) methods. The ductility of the critical sections should be sufficient for the envisaged mechanism to be formed. The required ductility may be deemed to be satisfied if all of the following are fulfilled:

- $x_{u} / d \leq 0.15$ for $f_{c k} \leq 50 \mathrm{MPa}$

■ $x_{u} / d \leq 0.10$ for $f_{c k} \geq 50 \mathrm{MPa}$

- Reinforcement is either Class B or C; and
- Ratio of the moments at internal supports to the moments in the span is between 0.5 and 2.0.

For solid slabs $x_{\mathrm{u}} / \mathrm{d} \leq 0.25$ may be used when $f_{\mathrm{ck}} \leq 50 \mathrm{MPa}$.

Non-linear analysis should be undertaken using model factors and material models, which give results that err on the safe side. Typically, this may be achieved by using design material properties and applying design actions. However, in some situations, underestimating stiffness through the use of design properties can lead to unsafe results. Such situations can include cases where indirect actions such as imposed deformations are significant, cases where the failure load is associated with a local brittle failure mode, and cases where the effect of tension stiffening is unfavourable. In such situations, sensitivity analyses should be undertaken to investigate the effect of variations in material properties, including spatial variations, to provide confidence that the results of the analysis do err on the safe side.

For non-linear analysis that considers only direct and flexural effects, reference may be made to BS EN 1992-2, Cl. 5.8.6. Such analysis should account for the effects of long-term loading. Effects not considered directly in the analysis should be considered separately in accordance with Sections 6 to 11.

Non-linear analysis that determines shear and torsional strength directly has not yet reached a stage where it can be fully codified. Particular analyses may be used when they have been shown by comparison with tests to give reliable results, with the agreement of the National Authority.

5.3.2 Serviceability limit states (SLS)

BS EN 1992-1-1 5.4

Linear elastic analysis may be carried out assuming:

- Uncracked cross-sections.
- Linear stress-strain relationships.
- The use of mean values of elastic modulus.

The moments derived from elastic analysis should not be redistributed but a gradual evolution of cracking should be considered, which requires a non-linear analysis allowing for the effect of cracking and tension stiffening. Un-cracked global analysis in accordance with BS EN 1992-1-1 Cl. 5.4 (2) may always be used as a conservative alternative to such considerations.

5.3.3 General note

Regardless of the method of analysis used, the following apply.

- Where a beam or slab is monolithic with its supports, the critical design moment at the support may be taken as that at the face of the support. The design moment and reaction transferred to the supporting element (e.g. column, wall, etc.) should be generally taken as the greater of the elastic or redistributed values. The moment at the face of the support should not be taken as less than 65% of the full fixed end moment.
- Where a beam or slab is continuous over a support which is considered to provide no restraint to rotation (e.g. over walls) and the analysis assumes point support, the design support moment calculated on the basis of a span equal to the centre-to-centre distance between supports, may be reduced by an amount ΔM_{Ed} as follows:
$\Delta M_{\text {Ed }}=F_{\text {Ed,sup }} t / 8$
where
$F_{\text {Ed,sup }}=$ design support reaction
$t \quad=$ breadth of bearing

5.4 Loading

5.4.1 Combinations of actions

BS EN 1990

 6.4.3The following combinations of actions should be used where appropriate.

Ultimate Limit State

Persistent or transient design situations:

$$
\gamma_{G} G_{k}+\gamma_{P} P+\gamma_{Q, 1} Q_{k, 1}+\Sigma \gamma_{Q, i} \psi_{0, i} Q_{k, i} \quad i>1
$$

Accidental design situations:

$G_{k}+P+A_{d}+\psi_{1,1} Q_{k, 1}+\Sigma \psi_{2, i} Q_{k, i} \quad i>1$
Note: $\psi_{2,1}$ may be substituted for $\psi_{1,1}$ depending on the accidental design situation.

Serviceability Limit State
 Characteristic combination of actions:

$$
G_{k}+P+Q_{k, 1}+\Sigma \psi_{0, i} Q_{k, i} \quad i>1
$$

To be used for stress limitation check for concrete and steel.

Frequent combination of actions:

$$
G_{k}+P+\psi_{1,1} Q_{k, 1}+\Sigma \psi_{2, i} Q_{k, i} \quad i>1
$$

To be used for decompression check or crack width check for prestressed concrete with bonded tendons.

Quasi-permanent combination of actions:

$$
G_{k}+P+\Sigma \psi_{2, i} Q_{k, i} \quad i>1
$$

To be used for crack width check for reinforced concrete and prestressed concrete without bonded tendons and deformation check.

Terms

Combination value of a variable action: $\psi_{0} \mathrm{Q}$
Frequent value of a variable action: $\psi_{1} \mathrm{Q}$
Quasi-permanent value of a variable action: $\psi_{2} \mathrm{Q}$

Load cases

In considering the combinations of actions (see Section 6 and Annex A2 of BS EN 1990) the relevant load cases shall be considered to enable the critical design conditions to be established at all sections, within the structure or part of the structure considered.

5.5 Geometrical imperfections

5.5.1 General

The unfavourable effects of possible deviations in the geometry of the structure and the position of loads shall be taken into account in the analysis of members and structures.

Imperfections shall be taken into account in ultimate limit states in persistent and accidental design situations.

BS EN 1992-2 5.1.3

5.5.2 Imperfections and global analysis of structures

Imperfections may be represented by an inclination θ_{i} given by:
$\theta_{1}=(1 / 200) \alpha_{h}$
where

$$
\begin{aligned}
& \alpha_{\mathrm{h}}=2 / l^{0.5} \leq 1.0 \\
& l=\text { length or height in metres }
\end{aligned}
$$

For isolated members the effect of the imperfections may be represented as an eccentricity or by a transverse force.

The eccentricity, e_{i}, given by
$e_{i}=\theta_{\mathrm{i}} l_{0} / 2$ where l_{0} is the effective length
The transverse force is applied in the position that gives maximum moment.
$H_{\mathrm{i}}=\theta_{1} N k$
where

$$
\begin{aligned}
H_{\mathrm{i}} & =\text { action applied at that level } \\
N & =\text { axial load } \\
k & =1.0 \text { for unbraced members (see Figure 5.4a) } \\
& =2.0 \text { for braced members (see Figure 5.4b) }
\end{aligned}
$$

For arch bridges, the shape of imperfections in the horizontal and vertical planes should be based on the shape of the first horizontal and vertical buckling mode shape respectively. Each mode shape may be idealised by a sinusoidal profile. The amplitude should be taken as $a=\theta_{1} l / 2$, where l is the half wavelength.

The disposition of imperfections used in analysis should reflect the behaviour and function of the structure and its elements. The shape of imperfection should be based on the anticipated mode of buckling of the member. For example, in the case of bridge piers, an overall lean imperfection should be used where buckling will be in a sway mode ("unbraced" conditions), while a local eccentricity within the member should be used where both ends of the member are held in position ("braced" conditions).

In using Expression (5.2) of Part 1-1 the eccentricity, e_{i}, derived should be taken as the amplitude of imperfection over the half wavelength of buckling; Figure 5.5 shows the imperfection suitable for a pier rigidly built in for moment at each end. A lean imperfection should however be considered in the design of the positional restraints for braced members. Further guidance and background are given in Hendy and Smith. [20]

Figure 5.4
Examples of the effects of geometric imperfections

Figure 5.5
Imperfections for pier built in at both ends

PD 6687-2 fig. 1

5.6 Design moments in columns

5.6.1 Definitions

Bracing members

Bracing members are members that contribute to the overall stability of the structure,
BS EN 1992-1-1
whereas braced members do not contribute to the overall stability of the structure.
5.8.1

Effective length l_{0}

For braced members:

$$
I_{0}=0.5 l\left[\left(1+k_{1} /\left(0.45+k_{1}\right)\right)\left(1+k_{2} /\left(0.45+k_{2}\right)\right)\right]^{0.5}
$$

For unbraced members I_{0} is the larger of either:
$I_{0}=l\left[1+10 k_{1} k_{2} /\left(k_{1}+k_{2}\right)\right]^{0.5}$
or
$l_{0}=l\left[1+k_{1} /\left(1.0+k_{1}\right)\right]\left[1+k_{2} /\left(1.0+k_{2}\right)\right]$
where
$l=$ clear height of the column between the end restraints
$k_{1}, k_{2}=$ relative flexibilities of rotational restraints at ends 1 and 2 respectively

Examples of different buckling modes and corresponding effective length factors for isolated

BS EN 1992-1-1 fig. 5.7

BS EN 1992-1-1 5.8.3.2(1)

BS EN 1992-1-1 5.8.3.1(1) \& NA

BS EN 1992-1-1
5.8.4

BS EN 1992-1-1 3.1.4(4), 3.1.4(5)

Figure 5.6
Examples of different buckling modes and corresponding effective lengths for isolated members

Slenderness ratio, λ

Slenderness ratio $\lambda=l_{0} / i$
where
$i=$ the radius of gyration of the uncracked concrete section
Ignoring reinforcement:
$\lambda=3.46 l_{0} / h$ for rectangular sections
$=4.0 \mathrm{l}_{0} / \mathrm{d}$ for circular sections
where

$$
\begin{aligned}
& h=\text { the depth in the direction under consideration } \\
& d=\text { the diameter }
\end{aligned}
$$

Limiting slenderness ratio $\lambda_{\text {lim }}$

The limiting slenderness ratio, $\lambda_{\text {lim }}$, above which second order effects should be considered, is given by
$\lambda_{\lim }=20 A B C / n^{0.5}$
where
$A=1 /\left(1+0.2 \varphi_{\mathrm{ef}}\right) \quad$ (if φ_{ef} is not known A may be taken as 0.7)
where
$\varphi_{\text {ef }} \quad=$ effective creep factor $=\varphi\left(\infty, t_{0}\right) M_{\text {OEqP }} / M_{\text {OEd }}$
$\varphi\left(\infty, t_{0}\right)=$ final creep coefficient (see Section 3.1.2)
$M_{\text {OEqp }}=$ the first order bending moment in the quasi-permanent load combination (SLS)
$M_{\text {OEd }} \quad=$ the first order bending moment in design load combination (ULS)
$B=(1+2 \omega)^{0.5} \quad$ (if ω is not known B may be taken as 1.1)
where
$\omega=$ mechanical reinforcement ratio

$$
=\left(A_{\mathrm{s}} / A_{\mathrm{c}}\right)\left(f_{\mathrm{yd}} / f_{\mathrm{cd}}\right)
$$

$A_{s}=$ total area of longitudinal reinforcement
$C=1.7-r_{\mathrm{m}}$ (If r_{m} is not known, C may be taken as 0.7
where
$r_{m}=M_{01} / M_{02}$, where M_{01} and M_{02} are the first order end moments at ULS with M_{02} numerically larger than M_{01}. If M_{01} and M_{02} give tension on the same side then r_{m} is positive (and $C<1.7$), see Figure 5.7
$r_{\mathrm{m}}=1.0$ for unbraced members and braced members in which the first order moments are caused largely by imperfections or transverse loading

Table 5.1
Effective height，l_{0} for columns

Case	Idealized column and buckling mode	Restraints			Effective height l_{0}
		Location	Position	Rotation	
1		Top	Full	Fulla	0．70l
		Bottom	Full	Fulla	
2	$\angle 1 / 1 / \angle 1$	Top	Full	None	0．85l
		Bottom	Full	Fulla	
3		Top	Full	None	1.01
		Bottom	Full	None	
4		Top	None ${ }^{\text {c }}$	None ${ }^{\text {c }}$	1.31
		Bottom	Full	Fulla	
5	1 ا $1 / 1 /$	Top	None	None	$1.4 l$
		Bottom	Full	Fulla	
6	ハールノ	Top	None	Fulla	1．5l
	l	Bottom	Full	Fulla	
7	ハノ市 ハ	Top	None	None	2.31
		Bottom	Full	Fulld	

Notes

The height of the bearings is negligible compared with that of the column．

Key

a Rotational restraint is at least $4(E I) / l$ ，where $(E I)$ is the flexural rigidity of the column
b May also be used with roller bearings provided that the rollers are held in place by an effective means，such as racks
c Lateral and rotational rigidity of elastomeric bearings are negligible
d Rotational restraint is at least $8(E /) / l$ ，where $(E I)$ is the flexural rigidity of the column

BS EN 1992-1-1 5.8.3.1(1) \& NA

BS EN 1992-1-1 5.8.4(4)

$$
\begin{aligned}
& n=N_{\mathrm{Ed}}\left(A_{\mathrm{c}} f_{\mathrm{cd}}\right) \\
& \text { where } \\
& \quad N_{\text {Ed }}=\text { design value of axial force }
\end{aligned}
$$

Note: φ_{ef} may be taken as 0 if all the following conditions are met:

$$
\varphi\left(\infty, t_{0}\right) \leq 2.0
$$

$$
\square \dot{\lambda} \leq 75 ; \text { and }
$$

$$
M_{\text {OEd }} / N_{\mathrm{Ed}} \geq h \text {, the depth of the cross-section in the relevant direction. }
$$

5.6.2 Design bending moments

Slender columns (nominal curvature method)

This method is primarily suitable for isolated members with constant normal force and a defined effective length l_{0}. The method gives a nominal second order moment based on a deflection, which in turn is based on the effective length and an estimated maximum curvature. Other methods are available in BS EN 1992-1-1.

The design moment is:
$M_{\text {Ed }}=M_{\text {OEd }}+M_{2}$

BS EN 1992-1-1 5.8.8.2(1)
where

> For columns in braced systems $\mathrm{e}_{\mathrm{i}}=l_{0} / 400$ (i.e. $\boldsymbol{\theta}_{\mathrm{i}}=/ / 200$ for most braced columns). The design eccentricity should be at least ($h / 30$) but not less than 20 mm .
> where
> $\theta=$ inclination used to represent imperfections
> $I_{0}=$ effective length of column
> $h=$ depth of the section in the relevant direction
$M_{\text {OEd }}=$ first order moment, including the effect of imperfections (and may be taken as $M_{\text {OE }}$)
$M_{2}=$ nominal second order moment
The maximum value of $M_{E d}$ is given by the distributions of $M_{\text {OEd }}$ and M_{2}; the latter may be taken as parabolic or sinusoidal over the effective length.

For braced structures (see Figure 5.8):
$M_{\mathrm{Ed}}=\operatorname{MAX}\left\{M_{0 \mathrm{e}}+M_{2} ; M_{02} ; M_{01}+0.5 M_{2}\right\}$

PD 6687-1

2.11

For unbraced structures:
$M_{E d}=M_{02}+M_{2}$
For moments without loads applied between their ends, differing first order end moments M_{01}

Figure 5.8 Moments in braced columns
a) First order moments for non-slender columns

b) Additional second c) Total moment order moments for diagram for $\begin{array}{ll}\begin{array}{l}\text { order moments for } \\ \text { slender columns }\end{array} & \begin{array}{l}\text { diagram for } \\ \text { slender columns }\end{array}\end{array}$

and M_{02} (see above) may be replaced by an equivalent first order end moment $M_{0 \mathrm{e}}$:
$M_{0 e}=0.6 M_{02}+0.4 M_{01} \geq 0.4 M_{02}$
BS EN 1992-1-1
5.8.8.2(2)

The nominal second order moment M_{2} is
$M_{2}=N_{\text {Ed }} e_{2}$
BS EN 1992-1-1 5.8.8.2(3)
where
$N_{\text {Ed }}=$ design value of axial force
$e_{2}=$ deflection
$=(1 / r) l_{0}{ }^{2} / c$
$1 / r=$ curvature $=K_{r} K_{\varphi}\left(f_{y d} /\left(E_{s} 0.45 d\right)\right)$
$K_{r}=\left(n_{u}-n\right) /\left(n_{u}-n_{\text {bal }}\right) \leq 1.0$

Note: K_{r} may be derived from column charts.

$n_{u}=1+\omega$
$\omega=$ mechanical reinforcement ratio
$=\left(A_{s} / A_{c}\right)\left(f_{\text {yd }} / f_{c d}\right)$ as in Section 5.6.1 above
$n=N_{E d} / A_{c} f_{c d}$ as defined in Section 5.6.1 above
$n_{\text {bal }}=$ value of n at maximum moment of resistance and may be taken as 0.4
$K_{\varphi}=1+\beta \varphi_{\text {ef }} \geq 1.0$
$\beta=0.35+\left(f_{c k} / 200\right)-(\lambda / 150)$
$\lambda=$ slenderness ratio l_{0} / i

```
BS EN 1992-1-1
5.8.8.2(4)
BS EN 1992-1-1
5.8.8.3
```

$i=$ radius of gyration of the uncracked concrete section
$\varphi_{\text {ef }}=$ effective creep coefficient as defined in Section 5.6.1
$I_{0}=$ effective length of column
$E_{\mathrm{s}}=200 \mathrm{GPa}$

BS EN 1992-1-1 3.2.7(4)

BS EN 1992-1-1 5.8.8.2(4)

BS EN 1992-1-1 5.8.9(2)

BS EN 1992-1-1 5.8.9(3)

BS EN 1992-1-1 5.8.9(2)

For constant cross section, $c=10\left(\approx \pi^{2}\right)$ is normally used. If the first order moment is constant, a lower value should be considered (8 is a lower limit, corresponding to constant total moment).

5.6.3 Biaxial bending

Separate design in each principal direction, disregarding biaxial bending, may be undertaken as a first step. No further check is necessary if:
$0.5 \leq \lambda_{\mathrm{y}} / \lambda_{\mathrm{z}} \leq 2.0$ and, for rectangular sections, and
$0.2 \geq\left(e_{\mathrm{y}} / h_{\text {eq }}\right) /\left(e_{\mathrm{z}} / b_{\text {eq }}\right) \geq 5.0$
where
$\lambda_{\mathrm{y}^{\prime}} \lambda_{\mathrm{z}}=$ slenderness ratios l_{0} / i with respect to the y - and z -axes
$e_{y}=M_{E d y} / N_{\text {Ed }}$
$h_{\text {eq }}=3.46 i_{z}$ (=h for rectangular sections)
$e_{z}=M_{E d z} / N_{E d}$
$b_{\text {eq }}=3.46 i_{\mathrm{y}}$ (= b for rectangular sections)
where
$N_{\mathrm{Ed}} \quad=$ design value of axial force
$M_{\text {Edy }} M_{\text {Edz }}=$ design moment in the respective direction. (Moments due to
imperfections need be included only in the direction where they have the most unfavourable effect.)

Note: for square columns $\left(e_{\mathrm{y}} / h_{\text {eq }}\right) /\left(e_{\mathrm{Z}} / b_{\text {eq }}\right)=M_{\text {Edy }} / M_{\text {Edz }}$

If this condition is not satisfied, and in the absence of an accurate cross-section design for biaxial bending, the following simplified criterion may be used:
$\left(M_{\text {Edz }} / M_{\text {Rdz }}\right)^{a}+\left(M_{\text {Edy }} / M_{\text {Rdy }}\right)^{a} \leq 1.0$
where
$M_{\text {Rdy }} M_{\text {Rdz }}=$ design moment around the respective axis including second order moment in the direction where it will give the most unfavourable effect.
a = an exponent: for circular or elliptical sections, $a=2.0$, for rectangular sections, interpolate between
$=1.0$ for $N_{\text {Ed }} / N_{\text {Rd }}=0.1$
$=1.5$ for $N_{\text {Ed }} / N_{\text {Rd }}=0.7$
$=2.0$ for $N_{\mathrm{Ed}} / N_{\mathrm{Rd}}=1.0$

5.7 Corbels

5.7.1 Definition

[^0]
5.7.2 Analysis

Corbels ($a_{c}<z_{0}$) may be designed using strut and tie models (see Figure 5.9) or as short beams designed for bending and shear.

The inclination of the strut is limited by $1.0 \leq \tan \theta \leq 2.5$.
If $a_{c} \leq 0.5 h_{c}$ closed horizontal or inclined links with $A_{s, l n k} \geq 0.5 A_{5, \text { main }}$ should be provided in addition to the main tension reinforcement (see Figure 5.10a).

If $a_{c}>0.5 h_{c}$ and $F_{\text {Ed }}>V_{\text {Rd,c }}$ (see Section 7.2.1) closed vertical links with $A_{s, \operatorname{lnk}} \geq 0.5 F_{\text {Ed }} / F_{\text {yd }}$ should be provided in addition to the main tension reinforcement (see Figure 5.10b).

The main tension reinforcement should be anchored at both ends. It should be anchored in the supporting element on the far face and the anchorage length should be measured from the location of the vertical reinforcement in the near face. The reinforcement should be anchored in the corbel and the anchorage length should be measured from the inner face of the loading plate.

If there are special requirements for crack limitation, inclined stirrups at the re-entrant opening can be effective.

The check of the compression strut can effectively be made by limiting the shear stress such that $F_{\mathrm{Ed}} \leq 0.5 b_{w} d v^{\prime} f_{\mathrm{cd}}$
where
$v^{\prime}=1-\left(f_{c k} / 250\right)$
$f_{c d}=\alpha_{c c} f_{c k} / \gamma_{C}$
$\alpha_{\text {cc }}=0.85$

[^1]Figure 5.9
Corbel strut-and-tie model

Figure 5.10
Corbel detailing

5.8 Lateral instability of slender beams

Lateral instability of slender beams shall be taken into account where necessary, e.g. for precast beams during transport and erection, for beams without sufficient lateral bracing in the finished structure etc. Geometric imperfections shall be taken into account. A lateral deflection of / / 300 should be assumed as a geometric imperfection in the verification of beams in unbraced conditions, with $l=$ total length of beam. In finished structures, bracing from connected members may be taken into account

Second order effects in connection with lateral instability may be ignored if the following conditions are fulfilled:
persistent situations: $l_{0 t} / b \leq 50 /(h / b)^{1 / 3}$ and $h / b \leq 2.5$
transient situations: $l_{0 t} / b \leq 70 /(h / b)^{1 / 3}$ and $h / b \leq 3.5$
where
$I_{0 t}=$ distance between torsional restraints
$h=$ total depth of beam in central part of $l_{0 t}$
$b=$ width of compression flange
Torsion associated with lateral instability should be taken into account in the design of supporting structures.

6 Bending and axial force

6.1 Assumptions

In determining the resistance of sections, the following assumptions are made.

BS EN 1992-1-1
6.1(2)

BS EN 1992-1-1
3.1.7(3), fig. 3.5

BS EN 1992-1-1 fig. 6.1

- Plane sections remain plane.
- Strain in the bonded reinforcement, whether in tension or compression, is the same as that in the surrounding concrete.
- Tensile strength of the concrete is ignored.
- Rectangular stress distribution in the section is as shown in Figure 6.1. Other stress-strain relationships are given in BS EN 1992-1-1 Cl. 3.1.7.
- Stresses in reinforcement are derived from Figure 6.2. The inclined branch of the design line may be used when strain limits are checked.
- For sections not fully in compression, the compressive strain in concrete should be limited to $\varepsilon_{\text {cuz }}$ (see Figure 6.3).
- For sections in pure axial compression, the compressive strain in concrete should be limited to $\varepsilon_{\mathrm{c} 2}$ (see Figure 6.3).
- For situations intermediate between these two conditions, the strain profile is defined by assuming that the strain is $\varepsilon_{\mathrm{c} 2}$ at half the depth of the section (see Figure 6.3).

Expressions derived from Figures 6.1 to 6.3 are provided in Section 17.

Figure 6.1
Rectangular stress distribution

Table 6.1
Values for η and λ when $f_{c k}>50$

$f_{\text {ck }}$	$\varepsilon_{\text {cu3 }}{ }^{\text {a }}$	$\eta^{\text {b }}$	λ^{c}
55	0.00313	0.98	0.79
60	0.00288	0.95	0.78
70	0.00266	0.90	0.75
Key a $\quad \varepsilon_{\text {cu3 }}(\%)=2.6+35\left[\left(90-f_{\text {ck }}\right) / 100\right]^{4}$ b $\eta=1-\left(f_{c k}-50\right) / 200$ c $\lambda=0.8-\left(f_{c k}-50\right) / 400$			

BS EN 1992-1-1
fig. 3.8

Figure 6.2
Idealised and design stress-strain diagrams for reinforcing steel (for tension and compression)

Figure 6.3
Possible strain distributions in the ultimate limit state

7 Shear

7.1 General

7.1.1 Definitions

For the verification of the shear resistance the following symbols are defined:

BS EN 1992-1-1 6.2.1(1)
$V_{\mathrm{Rd}, \mathrm{c}}=$ design shear resistance of a member without shear reinforcement
$V_{R d, s}=$ design value of the shear force that can be sustained by the yielding shear reinforcement
$V_{\mathrm{Rd}, \text { max }}=$ design value of the maximum shear force that can be sustained by the member, limited by crushing of the compression struts

These resist the applied shear force, V_{Ed}.

7.1.2 Requirements for shear reinforcement

```
If }\mp@subsup{V}{Ed}{}\leq\mp@subsup{V}{Rd,c}{
reinforcement should still be provided (see Section 15.2.6) except in:
| Slabs, where actions can be redistributed transversely.
\square Members of minor importance, which do not contribute significantly to the overall
    resistance and stability of the structure (e.g. lintels with a span of less than 2 m).
If }\mp@subsup{V}{\textrm{Ed}}{}>\mp@subsup{V}{\textrm{Rd},\textrm{c}}{}\mathrm{ shear reinforcement is required such that }\mp@subsup{V}{\textrm{Rd},\textrm{s}}{}>\mp@subsup{V}{\textrm{Ed}}{}\mathrm{ . The resistance of the
concrete to act as a strut should also be checked.
In members subject predominantly to uniformly distributed loading, the following apply:
- Shear at the support should not exceed }\mp@subsup{V}{\mathrm{ Rd,max}}{
\squareRequired shear reinforcement should be calculated at a distance d from the face of the
    support and continued to the support.
The longitudinal tension reinforcement should be able to resist the additional tensile force caused by shear (see Section 15.2.2).
The UK NA limits shear strength of concrete higher than C50/60 to that of C50/60.
``` between longitudinal shear and transverse bending in the webs of box girder sections should be considered in the design. When \(V_{\mathrm{Ed}} / V_{\mathrm{Rd}, \max }<0.2\) or \(M_{\mathrm{Ed}} / M_{\mathrm{Rd}, \max }<0.1\), this interaction can be disregarded (where \(V_{R d, \text { max }}\) and \(M_{R d, \max }\) represent respectively the maximum web capacity for longitudinal shear and transverse bending).

Further information on the interaction between shear and transverse bending may be found in Annex MM of BS EN 1992-2.

\subsection*{7.2 Resistance of members not requiring shear reinforcement}

\subsection*{7.2.1 General situation}

The design value for the shear resistance is given by:
\(V_{\mathrm{Rd}, \mathrm{c}}=\left[\left(0.18 / \gamma_{\mathrm{C}}\right) k\left(100 \rho_{\mathrm{l}} f_{\mathrm{ck}}\right)^{1 / 3}+0.15 \sigma_{\mathrm{cp}}\right] b_{\mathrm{w}} d\) \(\geq\left(0.035 k^{1.5} f_{c k}^{0.5}+0.15 \sigma_{\mathrm{cp}}\right) b_{\mathrm{w}}{ }^{d}\)
where
\(k=1+(200 / d)^{0.5} \leq 2.0(d\) in mm; see Table 7.1)
\(\gamma_{C}=0.15\)
\(\rho_{\mathrm{l}}=A_{\mathrm{sl}} /\left(b_{\mathrm{w}} d\right) \leq 0.02\)
where
\(A_{s l}=\) area of the tensile reinforcement extending at least \(l_{b d}+d\) beyond the section considered (see Figure 7.1); the area of bonded prestressing steel may be included in the calculation of \(A_{\text {sl }} \cdot\) In this case a weighted mean value of \(d\) may be used.
\(l_{\text {bd }}=\) design anchorage length
\(b_{\mathrm{w}}=\) smallest width of the cross-section in the tensile area
\(\sigma_{\mathrm{cp}}=N_{\mathrm{Ed}} / A_{\mathrm{c}}<0.2 f_{\mathrm{cd}}(\mathrm{MPa})\)
where
\(N_{\mathrm{Ed}}=\) axial force in the cross-section due to loading or prestressing in newtons (\(N_{\text {Ed }}>0\) for compression). The influence of imposed deformations on \(N_{\text {Ed }}\) may be ignored.
\(A_{C}=\) area of concrete cross-section \(\left(\mathrm{mm}^{2}\right)\)

Table 7.1
\(V_{\mathrm{Rd}, \mathrm{c}}\), shear resistance without shear reinforcement where \(\sigma_{\mathrm{CP}}=0(\mathrm{MPa})\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\rho_{\mathrm{l}}=\boldsymbol{A}_{s} /(\mathrm{bd})\)} & \multicolumn{11}{|l|}{Effective depth d (mm)} \\
\hline & \(\leq 200\) & 225 & 250 & 275 & 300 & 350 & 400 & 450 & 500 & 600 & 750 \\
\hline 0.25\% & 0.54 & 0.52 & 0.50 & 0.48 & 0.47 & 0.45 & 0.43 & 0.41 & 0.40 & 0.38 & 0.36 \\
\hline 0.50\% & 0.59 & 0.57 & 0.56 & 0.55 & 0.54 & 0.52 & 0.51 & 0.49 & 0.48 & 0.47 & 0.45 \\
\hline 0.75\% & 0.68 & 0.66 & 0.64 & 0.63 & 0.62 & 0.59 & 0.58 & 0.56 & 0.55 & 0.53 & 0.51 \\
\hline 1.00\% & 0.75 & 0.72 & 0.71 & 0.69 & 0.68 & 0.65 & 0.64 & 0.62 & 0.61 & 0.59 & 0.57 \\
\hline 1.25\% & 0.80 & 0.78 & 0.76 & 0.74 & 0.73 & 0.71 & 0.69 & 0.67 & 0.66 & 0.63 & 0.61 \\
\hline 1.50\% & 0.85 & 0.83 & 0.81 & 0.79 & 0.78 & 0.75 & 0.73 & 0.71 & 0.70 & 0.67 & 0.65 \\
\hline 1.75\% & 0.90 & 0.87 & 0.85 & 0.83 & 0.82 & 0.79 & 0.77 & 0.75 & 0.73 & 0.71 & 0.68 \\
\hline \(\geq \mathbf{2 . 0 0 \%}\) & 0.94 & 0.91 & 0.89 & 0.87 & 0.85 & 0.82 & 0.80 & 0.78 & 0.77 & 0.74 & 0.71 \\
\hline \(\boldsymbol{k}\) & 2.000 & 1.943 & 1.894 & 1.853 & 1.816 & 1.756 & 1.707 & 1.667 & 1.632 & 1.577 & 1.516 \\
\hline Notes & & & & & & & & & & & \\
\hline
\end{tabular}

1 Table derived from BS EN 1992-1-1 and the UK National Annex.
\(\mathbf{2}\) Table created for \(f_{\mathrm{ck}}=30 \mathrm{MPa}\) assuming vertical links.
3 For \(\rho_{l} \geq 0.4 \%\) and \(f_{\mathrm{ck}}=25 \mathrm{MPa}\), apply factor of 0.94
\(f_{c k}=35 \mathrm{MPa}\), apply factor of 1.05
\(f_{\mathrm{ck}}=45 \mathrm{MPa}\), apply factor of 1.14
\(f_{c k}=40 \mathrm{MPa}\), apply factor of 1.10
\(f_{c k} \geq 50 \mathrm{MPa}\), apply factor of 1.19

\subsection*{7.2.2 Uncracked regions in prestressed members}

In prestressed single-span members without shear reinforcement, the shear resistance of the regions cracked in bending may be calculated using the Expression in Section 7.2.1. In regions uncracked in bending (where the flexural tensile stress is smaller than \(f_{c t k, 0.05} / \gamma_{C}\)) the shear resistance should be limited by the tensile strength of the concrete. In these regions the shear resistance is given by:
\(V_{\mathrm{Rd}, \mathrm{c}}=\left(I b_{\mathrm{w}} / S\right)\left(f_{\mathrm{ctd}}{ }^{2}+\alpha_{1} \sigma_{\mathrm{cp}} f_{\mathrm{ctd}}\right)^{0.5}\)
where
I = second moment of area
\(b_{w}=\) width of the cross-section at the centroidal axis, allowing for the presence of ducts (see below)
\(S=\) first moment of area above and about the centroidal axis
\(\alpha_{1}=l_{\mathrm{x}} l_{\mathrm{pt} 2} \leq 1.0\) for pretensioned tendons
\(=1.0\) for other types of prestressing
\(I_{x}=\) distance of section considered from the starting point of the transmission length
\(l_{\mathrm{pt2}}=\) upper bound value of the transmission length of the prestressing (See section 14.6)
\(\sigma_{\mathrm{cp}}=\) concrete compressive stress at the centroidal axis due to axial loading and/or prestressing (\(\sigma_{\mathrm{cp}}=N_{\mathrm{Ed}} / A_{\mathrm{c}}\) in \(\mathrm{MPa}, N_{\mathrm{Ed}}>0\) in compression)

Alternatively, where there is no axial force, including prestressing \(V_{\mathrm{Rd}, \mathrm{c}}=b_{\mathrm{w}} d v_{\mathrm{Rd}, \mathrm{c}}\) with \(v_{\mathrm{Rd}, \mathrm{c}}\) available from Table 7.1
In most practical cases if \(v_{\mathrm{Ed}}<v_{\mathrm{Rd}, \mathrm{c}}\) shear reinforcement will not be required where
\(V_{E d}=\) shear stress for sections without shear reinforcement \(=V_{E d} / b_{w} d\).
\(v_{\mathrm{Rd}, \mathrm{c}}\) may be interpolated from Table 7.1.

\subsection*{7.2.3 Short span shear enhancement}

> The approach in BS EN 1992-1-1 of applying a reduction factor to the load is not suitable for cases with multiple, indirect or distributed loads. Therefore, in the NA to BS EN 1992-2, the expression for \(C_{\text {Rd, }, \text { c }}\) has been modified from the recommended value so that the effects of shear enhancement are taken into account through increasing the shear resistance of members near to supports. See Figure 7.2.

For members with actions applied at a distance \(\alpha_{v}\) where \(0.5 d \leq \alpha_{v} \leq 2 d\) :
\[
V_{\mathrm{Rd}, \mathrm{c}}=\left[\left(\frac{0.18}{\gamma_{\mathrm{C}}}\right)\left(\frac{2 d}{\alpha_{\mathrm{v}}}\right) k\left(100 \rho_{1} f_{\mathrm{ck}}\right)^{1 / 3}+0.15 \sigma_{\mathrm{cp}}\right] b_{\mathrm{w}} d
\]
provided that the shear force, \(V_{\text {Ed }}\), is not multiplied by \(\beta\) (BS EN 1992-1-1, Cl. 6.2.2(6)) and the longitudinal reinforcement is fully anchored at the support.

Figure 7.1

a) End support

b) Internal support

BS EN 1992-2 fig. 6.3

Figure 7.2
Loads near supports

a) Beam with direct support

b) Corbel

\subsection*{7.3 Resistance of members requiring shear reinforcement}

\subsection*{7.3.1 Basis}

The design of members with shear reinforcement is based on the truss model shown in Figure 7.3. A simplified version of this diagram is shown in Figure 7.4.

Figure 7.3
Truss model and notation for shear reinforced members

\subsection*{7.3.2 Shear resistance check}

The resistance of the concrete section to act as a strut \(V_{R d, \text { max }}\) should be checked to ensure that it equals or exceeds the design shear force, \(V_{E d}\) i.e. ensure that:
\(V_{\text {Rd, max }}=\alpha_{\mathrm{cw}} b_{\mathrm{w}} z \nu_{1} f_{\mathrm{cd}}(\cot \theta+\tan \theta) \geq V_{\mathrm{Ed}}\) with vertical links
\[
=\alpha_{\mathrm{cw}} b_{\mathrm{w}} z \boldsymbol{v}_{1} f_{\mathrm{cd}}(\cot \theta+\cot \alpha) /\left(1+\cot ^{2} \theta\right) \geq V_{\mathrm{Ed}} \text { with inclined links }
\]
where
\(z=\) lever arm (See Section 7.3.3)
\(v_{1}=0.6\left[1-\left(f_{c k} / 250\right)\right](1-0.5 \cos \alpha)\)
\(f_{c d}=1.0 f_{c k} / 1.5\)
\(\theta=\) angle of inclination of the strut, such that \(\cot \theta\) lies between 1.0 and 2.5 .
\(\alpha=\) angle of inclination of the links to the longitudinal axis For vertical links \(\cot \alpha=0\).
\(\alpha_{\mathrm{cw}}=\) coefficient taking account of the state of the stress in the compression chord (see Table 7.2)
\(=1\) for non-prestressed structures
\(=\left(1+\sigma_{c p} / f_{c d}\right)\) for \(0<\sigma_{c p} \leq 0.25 f_{c d}\)
\(=1.25\) for \(0.25 f_{c d}<\sigma_{c p} \leq 0.5 f_{c d}\)
\(=2.5\left(1-\sigma_{c p} / f_{c d}\right)\) for \(0.5 f_{c d}<\sigma_{c p}<1.0 f_{c d}\)
where
\(\sigma_{\mathrm{cp}}=\) mean compressive stress, measured positive, in the concrete due to the design axial force.
\(\sigma_{\text {cp }}\) should be obtained by averaging it over the concrete section taking account of the reinforcement. The value of \(\sigma_{\text {cp }}\) need not be calculated at a distance less than \(0.5 d \cot \theta\) from the edge of the support.

The values of \(\boldsymbol{v}_{1}\) and \(\alpha_{c w}\) should not give rise to a value of \(V_{\text {Rd,max }}\) greater than \(200 b_{w}{ }^{2}\) at sections more than a distance \(d\) from the edge of a support. For this purpose, the value of \(b_{w}\) does not need to be reduced for ducts.

Table 7.2
Values for \(\alpha_{\mathrm{cw}}\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\boldsymbol{f}_{\text {ck }}\) & \(\boldsymbol{f}_{\text {cd }}\) & \multicolumn{10}{|c|}{ Mean compressive stress, \(\sigma_{\text {cp }}\)} \\
\cline { 3 - 22 } & & \(\mathbf{0}\) & \(\mathbf{0 . 5}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{1 0}\) & \(\mathbf{2 0}\) & \(\mathbf{3 0}\) \\
\hline \(\mathbf{2 0}\) & \(\mathbf{1 3 . 3}\) & 1 & 1.04 & 1.08 & 1.15 & 1.23 & 1.25 & 1.25 & 0.63 & - & - \\
\hline \(\mathbf{2 5}\) & \(\mathbf{1 6 . 7}\) & 1 & 1.03 & 1.06 & 1.12 & 1.18 & 1.24 & 1.25 & 1.00 & - & - \\
\hline \(\mathbf{3 0}\) & \(\mathbf{2 0 . 0}\) & 1 & 1.03 & 1.05 & 1.10 & 1.15 & 1.20 & 1.25 & 1.25 & - & - \\
\hline \(\mathbf{3 5}\) & \(\mathbf{2 3 . 3}\) & 1 & 1.02 & 1.04 & 1.09 & 1.13 & 1.17 & 1.21 & 1.25 & 0.36 & - \\
\hline \(\mathbf{4 0}\) & \(\mathbf{2 6 . 7}\) & 1 & 1.02 & 1.04 & 1.08 & 1.11 & 1.15 & 1.19 & 1.25 & 0.63 & - \\
\hline \(\mathbf{4 5}\) & \(\mathbf{3 0 . 0}\) & 1 & 1.02 & 1.03 & 1.07 & 1.10 & 1.13 & 1.17 & 1.25 & 0.83 & - \\
\hline \(\mathbf{5 0}\) & \(\mathbf{3 3 . 3}\) & 1 & 1.02 & 1.03 & 1.06 & 1.09 & 1.12 & 1.15 & 1.25 & 1.00 & 0.25 \\
\hline \(\mathbf{6 0}\) & \(\mathbf{4 0 . 0}\) & \(\mathbf{1}\) & 1.01 & 1.03 & 1.05 & 1.08 & 1.10 & 1.13 & 1.25 & 1.25 & 0.63 \\
\hline \(\mathbf{7 0}\) & \(\mathbf{4 6 . 7}\) & \(\mathbf{1}\) & 1.01 & 1.02 & 1.04 & 1.06 & 1.09 & 1.11 & 1.21 & 1.25 & 0.89 \\
\hline
\end{tabular}

In the case of straight tendons, a high level of prestress \(\left(\sigma_{c p} / f_{c d}>0.5\right)\) and thin webs, if the tension and the compression chords are able to carry the whole prestressing force and blocks are provided at the extremity of beams to disperse the prestressing force (see Figure 7.5), it may be assumed that the prestressing force is distributed between the chords. In these circumstances, the compression field due to shear only should be considered in the web (\(\alpha_{\mathrm{cw}}=1\)).

Figure 7.5
Dispersion of prestressing by end blocks within the chords

The maximum effective cross-sectional area of the shear reinforcement \(A_{\text {sw,max }}\) for \(\cot \theta=1\) is given by:
\[
\frac{A_{\mathrm{sw}, \max } f_{\mathrm{ywd}}}{b_{\mathrm{w}} s} \leq 1 / 2 \alpha_{\mathrm{cw}} v_{1} f_{\mathrm{cd}}
\]

\subsection*{7.3.3 Lever arm, \(z\)}

In the shear analysis of reinforced concrete, the approximate value \(z=0.9 \mathrm{~d}\) may normally be used. This is not appropriate when:
- There is an axial force or prestress, or
- The width at the centroid is greater than the minimum cross-section width in compression, or
- The cross-section has a tension flange but no compression flange

In such cases the lever arm should be determined based on an analysis of the section.

\subsection*{7.3.4 Shear reinforcement required, \(A_{\text {sw }} / \mathrm{s}\)}

The cross-sectional area of the shear reinforcement required is calculated using the shear resistance:
\(V_{\mathrm{Rd}, \mathrm{s}}=\left(A_{\mathrm{sw}} / \mathrm{s}\right) \mathrm{zf} f_{\mathrm{ywd}}(\cot \theta+\cot \alpha) \sin \alpha \leq V_{\mathrm{Rd}, \max }\)
where
\(A_{\text {sw }}=\) cross-sectional area of the shear reinforcement. (For \(A_{\text {sw,min }}\) see Section 15.2.6)
\(s=\) spacing of the stirrups
\(z=\) lever arm (See Section 7.3.3)
\(f_{\text {ywd }}=f_{\text {ywk }} / \gamma_{\mathrm{S}}=\) design yield strength of the shear reinforcement
\(\alpha=\) angle of the links to the longitudinal axis
For vertical links, cot \(\alpha=0\) and \(\sin \alpha=1.0\), and:
\(A_{\mathrm{sw}} / \mathrm{s} \geq V_{\mathrm{Ed}} /\left(z f_{\mathrm{ywd}} \cot \theta\right)\)

\subsection*{7.3.5 Webs containing metal ducts}

Where the web contains grouted metal ducts with a diameter \(\phi>b_{w} / 8\) the shear resistance \(v_{\text {Rd,max }}\) should be calculated on the basis of a nominal web thickness given by:
\(b_{\mathrm{w}, \mathrm{nom}}=b_{\mathrm{w}}-0.5 \Sigma \phi\) where \(\phi\) is the outer diameter of the duct and \(\Sigma \phi\) is determined for the most unfavourable level.

For grouted metal ducts with \(\phi \leq b_{w} / 8, b_{w, \text { nom }}=b_{w}\)
For non-grouted ducts, grouted plastic ducts and unbonded tendons the nominal web thickness is:
\(b_{\mathrm{w}, \mathrm{nom}}=b_{\mathrm{w}}-1.2 \Sigma \phi\)
The value 1.2 is introduced to take account of splitting of the concrete struts due to transverse tension. If adequate transverse reinforcement is provided this value may be reduced to 1.0.

\subsection*{7.3.6 Additional tensile forces}

The additional tensile force, \(\Delta F_{\mathrm{td}}\), in the longitudinal reinforcement due to shear \(V_{\mathrm{Ed}}\) may be calculated from:
\(\Delta F_{\mathrm{td}}=0.5 V_{\mathrm{Ed}}(\cot \theta-\cot \alpha)\)
\(M_{\mathrm{Ed}} / \mathrm{z}+\Delta F_{\mathrm{td}}\) should be taken as not greater than \(M_{\mathrm{Ed}, \max } / \mathrm{z}\)
where
\[
M_{\mathrm{Ed}, \max }=\text { maximum moment along the beam }
\]

This additional tensile force gives rise to the 'shift' rule for the curtailment of reinforcement (see Section 15.2).

In the case of bonded prestressing, located within the tensile chord, the resisting effect of prestressing may be taken into account for carrying the total longitudinal tensile force. In the case of inclined bonded prestressing tendons in combination with other longitudinal reinforcement/tendons the shear strength may be evaluated, by a simplification, superimposing two different truss models with different geometry (Figure 7.6); a weighted mean value between \(\theta_{1}\) and \(\theta_{2}\) may be used for concrete stress field verification with Expression (6.9).

Figure 7.6
Superimposed resisting model for shear

\subsection*{7.3.7 Members with actions applied near bottom of section}

Where load is applied near the bottom of a section, sufficient shear reinforcement to carry the load to the top of the section should be provided in addition to any shear reinforcement required to resist shear.

\subsection*{7.3.8 Shear between web and flanges of T-sections}

The longitudinal shear stress, \(v_{\mathrm{Ed}}\), at the junction between one side of a flange and the web is determined by the change of the normal (longitudinal) force in the part of the flange considered, according to:
\(v_{\mathrm{Ed}}=\Delta F_{\mathrm{d}} /\left(h_{\mathrm{f}} \Delta x\right)\)
where
\(h_{\mathrm{f}}=\) thickness of flange at the junctions
\(\Delta x=\) length under consideration, see Figure 7.7
\(\Delta F_{d}=\) change of the normal force in the flange over the length \(\Delta x\)

BS EN 1992-2 6.2.4(103)

\section*{BS EN 1992-1-1} fig. 6.7

Figure 7.7
Notations for the connection between flange and web

The maximum value that may be assumed for \(\Delta x\) is half the distance between the section where the moment is 0 and the section where the moment is maximum. Where point loads are applied the length \(\Delta x\) should not exceed the distance between point loads.

Alternatively, considering a length \(\Delta x\) of the beam, the shear transmitted from the web to the flange is \(v_{\mathrm{Ed}} \Delta x / z\) and is divided into three parts: one remaining within the web breadth and the other two going out to the flange outstands. It should be generally assumed that the proportion of the force remaining within the web is the fraction \(b_{w} / b_{\text {eff }}\) of the total force. A greater proportion may be assumed if the full effective flange breadth is not required to resist the bending moment. In this case a check for cracks opening at SLS may be necessary.

The rate of change of the flange forces can be underestimated if the effects of web shear on the flange forces are not included, particularly for compression flanges. The chord forces as determined for the design of the web reinforcement should therefore be used.

For compression flanges, \(F_{\mathrm{d}}\) may be calculated as follows:
\(F_{\mathrm{d}}=\left(b_{\text {eff }}-b_{\mathrm{w}}\right) F_{\mathrm{cd}} /\left(2 b_{\text {eff }}\right)\) when \(h_{\mathrm{f}}>x_{\mathrm{c}}\)
\(F_{\mathrm{d}}=\left(b_{\text {eff }}-b_{\mathrm{w}}\right) f_{\mathrm{cd}} h_{\mathrm{f}} / 2\) when \(h_{\mathrm{f}} \leq x_{\mathrm{c}}\)
where
\(x_{c}=\) depth of the compression zone
\(F_{\mathrm{cd}}=\) total force in the compression chord of the shear truss in the web
For tension flanges, \(F_{d}\) may be calculated by determining the proportion of the total tension chord force, \(F_{\mathrm{td}}\), carried in each side of the flange.

The transverse reinforcement per unit length \(A_{s f} / s_{f}\) may be determined as follows:
\(\left(A_{\text {sf }} f_{y d} / s_{f}\right) \geq v_{\text {Ed }} h_{f} / \cot \theta_{f}\)
To prevent crushing of the compression struts in the flange, the following condition should be satisfied:
\(V_{\text {Ed }} \leq 0.6\left(1-f_{\mathrm{ck}} / 250\right) f_{\mathrm{cd}} \sin \theta_{\mathrm{f}} \cos \theta_{\mathrm{f}}\)
where
\[
f_{c d}=1.0 f_{c k} / 1.5
\]

The permitted range of the values for \(\cot \theta_{\mathrm{f}}\) are:
\(1.0 \leq \cot \theta_{\mathrm{f}} \leq 2.0\) for compression flanges \(\left(45^{\circ} \geq \theta_{\mathrm{f}} \geq 26.5^{\circ}\right)\)
\(1.0 \leq \cot \theta_{f} \leq 1.25\) for tension flanges (\(45^{\circ} \geq \theta_{f} \geq 38.6^{\circ}\))
If \(v_{\mathrm{Ed}}\) is less than or equal to \(0.4 f_{\text {ctd }}\) no extra reinforcement above that for flexure is required.
Longitudinal tension reinforcement in the flange should be anchored beyond the strut required to transmit the force back to the web at the section where this reinforcement is required (See Section \((A-A)\) of Figure 7.7).

\subsection*{7.3.9 Interface shear between concretes placed at different times}

When composite action is assumed between two layers of concrete cast at different times, it is necessary to prevent slip between the two layers. This will result in shear stress at the interface, which should be verified. The force at the interface is the flange force in the new concrete caused by the bending moment on the composite section.

The shear stress at the interface between concrete cast at different times should satisfy the following.
\(v_{\text {Edi }} \leq v_{\text {Rdi }}\)
where
\(v_{\text {Edi }}=\) design value of the shear stress in the interface and is given by:
\(v_{\text {Edi }}=\beta V_{\text {Ed }} /\left(z b_{i}\right)\)
where
\(V_{\mathrm{Ed}}=\) transverse shear force
\(z=\) lever arm of the composite section
\(b_{\mathrm{i}}=\) width of the interface (see Figure 7.8)
\(\beta=\) ratio of the longitudinal force in the new concrete and the total longitudinal force either in the compression or tension zone, both calculated for the section considered
\(v_{\text {Rdi }}=c f_{\mathrm{ctd}}+\mu \sigma_{\mathrm{n}}+\rho f_{\mathrm{yd}}(\mu \sin \alpha+\cos \alpha) \leq 0.50 .6\left(1-f_{\mathrm{ck}} / 250\right) f_{\mathrm{cd}}\)
where
the values of \(c\) and \(\mu\) depend on the interface surface and are shown in Table 7.3
\(f_{\text {ctd }}=f_{\text {ctk }, 0.05} / 1.5\)
\(f_{c d}=1.0 f_{c k} / 1.5\)
\(\sigma_{\mathrm{n}}=\) stress normal to the interface not to be taken greater than \(0.6 f_{\mathrm{cd}}\)
\(\rho=A_{\mathrm{s}} / A_{\mathrm{i}}\)
\(A_{s}=\) area of reinforcement crossing the interface including ordinary shear reinforcement (if any), with adequate anchorage at both sides of the interface
\(A_{i}=\) area of the joint
\(\alpha=\) angle of reinforcement crossing the interface (\(45^{\circ} \leq \alpha \leq 90^{\circ}\))

BS EN 1992-1-1 fig. 6.8

Figure 7.8
Examples of interfaces for shear

Table 7.3
Values of \(\mu\) and C for various interfaces
\begin{tabular}{|l|l|l|}
\hline Classification of interface surfaces & Friction coefficient, \(\mu\) & Shear coefficient, \(c\) \\
\hline \begin{tabular}{l}
Very smooth: surface cast against steel, \\
plastic or smooth wooden moulds
\end{tabular} & 0.5 & 0.10 \\
\hline \begin{tabular}{l}
Smooth: slipformed or extruded surface or \\
face untreated after vibration
\end{tabular} & 0.6 & 0.20 \\
\hline \begin{tabular}{l}
Rough: a surface with at least 3 mm \\
roughness at 40 mm spacing
\end{tabular} & 0.7 & 0.40 \\
\hline
\end{tabular}

\section*{BS EN 1992-1-1 6.2.5(2)}

Where a stepped distribution of transverse reinforcement is used, the total resistance within any band of reinforcement should be not less than the total longitudinal shear in the same length and the longitudinal shear stress evaluated at any point should not exceed the

\section*{8 Punching shear}

\subsection*{8.1 General}

\subsection*{8.1.1 Basis of design}

\section*{BS EN 1992-1-1}
6.4.1

\begin{abstract}
Punching shear is a local shear failure around concentrated loads on slabs and the most common situations where the punching shear rules are relevant in bridge applications are in the design of pile caps, pad footings, and deck slabs which are subjected to wheel loads and around supports in slabs supported on discrete bearings or columns. The resulting stresses are verified along defined control perimeters around the loaded area. The shear force acts over an area \(u d_{\text {eff }}\), where \(u\) is the length of the perimeter and \(d_{\text {eff }}\) is the effective depth of the slab taken as the average of the effective depths in two orthogonal directions.
\end{abstract}

\subsection*{8.1.2 Design procedure}

At the column perimeter, or the perimeter of the loaded area, the maximum punching shear stress should not be exceeded, \(v_{\mathrm{Ed}} \leq v_{\text {Rd,max }}\).

Punching shear reinforcement is not necessary if
\(v_{\text {Ed }} \leq v_{\text {Rd, }}\)
Where \(v_{\mathrm{Ed}}\) exceeds \(v_{\text {Rd, }, ~}\) for the control section considered, punching shear reinforcement should be provided according to Section 8.5
where
\(v_{\text {Ed }} \quad=\) design value of the applied shear stress (see Sections 8.2 and 8.3)
\(v_{\mathrm{Rd}, \text { max }}=\) design value of the maximum punching shear resistance (see Section 8.6) along the control section considered
\(v_{\mathrm{Rd}, \mathrm{c}}=\) design value of punching shear resistance of a slab without punching shear reinforcement, along the control section considered (see Section 8.4)
\(v_{\mathrm{Rd}, \mathrm{cs}}=\) design value of punching shear resistance of a slab with punching shear reinforcement, along the control section considered (see Section 8.5)

\subsection*{8.2 Applied shear stress}

\subsection*{8.2.1 General}

Where the support reaction is eccentric with regard to the control perimeter, the maximum shear stress should be taken as:
```

vEd
where
d = mean effective depth
= (dy+dz
u
V Ed
\beta= factor dealing with eccentricity
dy = effective depth in y-direction
d

```
where
d \(=\) mean effective depth
\(=\left(d_{y}+d_{z}\right) / 2\)
\(u_{\mathrm{i}}=\) length of the control perimeter under consideration (see Section 8.3)
\(V_{\mathrm{Ed}}=\) design value of applied shear force
\(\beta=\) factor dealing with eccentricity
\(d_{y}=\) effective depth in \(y\)-direction
\(d_{z}=\) effective depth in z-direction

\subsection*{8.2.2 Values of \(\beta\) (conservative values from diagram)}

For braced structures, where adjacent spans do not differ by more than \(25 \%\), the values of \(\beta\) shown in Figure 8.1 may be used.

BS EN 1992-1-1 6.4.3(6)

Figure 8.1 Recommended values for \(\beta\)

\subsection*{8.2.3 Values of \(\beta\) (using calculation method)}

As an alternative to Section 8.2.2, the values of \(\beta\) can be obtained using the following methods.

\section*{Internal columns}
- For internal rectangular columns with loading eccentric to one axis:

BS EN 1992-1-1
Exp. (6.39)

BS EN 1992-1-1
Exp. (6.40)

Figure 8.2
BS EN 1992-1-1
Shear distribution due to an unbalanced moment at a slab/ internal column connection

Values for \(\boldsymbol{k}\) for rectangular loaded areas

\section*{BS EN 1992-1-1 table 6.1}

BS EN 1992-1-1 Exp. (6.43)

BS EN 1992-1-1
Exp. (6.42)
\begin{tabular}{|l|l|l|l|l|}
\hline \(\boldsymbol{c}_{\mathbf{1}} / \boldsymbol{c}_{\mathbf{2}}\) & \(\leq \mathbf{0 . 5}\) & \(\mathbf{1 . 0}\) & \(\mathbf{2 . 0}\) & \(\geq \mathbf{3 . 0}\) \\
\hline \(\boldsymbol{k}\) & 0.45 & 0.60 & 0.70 & 0.80 \\
\hline
\end{tabular}
- For internal rectangular columns with loading eccentric to both axes: \(\beta=1+1.8\left[\left(e_{\mathrm{y}} / b_{\mathrm{z}}\right)^{2}+\left(e_{\mathrm{z}} / b_{\mathrm{y}}\right)^{2}\right]^{0.5}\)
where
\(e_{y}\) and \(e_{z}=M_{E d} / V_{\mathrm{Ed}}\) along \(y\) and \(z\) axes respectively
\(b_{\mathrm{y}}\) and \(b_{\mathrm{z}}=\) the dimensions of the control perimeter (see Figure 8.3)
- For internal circular columns:
\(\beta=1+0.6 \pi e /(D+4 d)\)
where
\(D=\) diameter of the circular column \(e=M_{E d} / V_{E d}\)

Figure 8.3
Typical basic control perimeters around loaded areas

\section*{Edge columns}

For edge columns, with loading eccentricity perpendicular and interior to the slab edge, \(\beta=u_{1} / u_{1 *}\)
where
\(u_{1}=\) basic control perimeter (see Figure 8.4)
\(u_{1 *}=\) reduced control perimeter (see Figure 8.5)

For edge columns, with eccentricity to both axes and interior to the slab edge \(\beta=u_{1} / u_{1^{*}}+k e_{\mathrm{par}} u_{1} / W_{1}\)
where
\(k=\) coefficient depending on the ratio of the column dimensions \(c_{1}\) and \(c_{2}\) as shown in Figure 8.5 (see Table 8.2)
\(e_{\text {par }}=\) eccentricity parallel to the slab edge resulting from a moment about an axis perpendicular to the slab edge
\(W_{1}=c_{2}^{2} / 4+c_{1} c_{2}+4 c_{1} d+8 d^{2}+\pi d c_{2}\)
where
\(c_{1}\) and \(c_{2}\) are as in Figure 8.5

BS EN 1992-1-1 fig. 6.15

Figure 8.4
Control perimeters for loaded areas at or close to an edge or corner

BS EN 1992-1-1 fig. 6.20

Figure 8.5
Equivalent control perimeter \(u_{1 *}\)

Table 8.2
Values for \(\boldsymbol{k}\) for rectangular loaded areas at edge of slabs and subject to eccentric loading in both axes
\begin{tabular}{|l|l|l|l|l}
\hline \(\boldsymbol{c}_{\mathbf{1}} \mathbf{/ 2} \boldsymbol{c}_{\mathbf{2}}{ }^{*}\) & \(\leq \mathbf{0 . 5}\) & \(\mathbf{1 . 0}\) & \(\mathbf{2 . 0}\) & \(\mathbf{2 3 . 0}\) \\
\hline \(\boldsymbol{k}\) & 0.45 & 0.60 & 0.70 & 0.80 \\
\hline \begin{tabular}{l}
Note \\
* differs from Table 8.1
\end{tabular} & & & \\
\hline
\end{tabular}

\section*{Corner columns}

For corner columns with eccentricity towards interior of the slab
\(\beta=u_{1} / u_{1 *}\)

BS EN 1992-1-1 6.4.3(5)

BS EN 1992-1-1
Exp. (6.46)
where
\(u_{1}=\) basic control perimeter (see Figure 8.4)
\(u_{1^{*}}=\) reduced control perimeter (see Figure 8.5)

\section*{Perimeter columns where eccentricity is exterior to slab}

\subsection*{8.3 Control perimeters}

\subsection*{8.3.1 Basic control perimeter \(u_{1}\) (internal columns)}

The basic control perimeter \(u_{1}\) may be taken to be at a distance of 2.0 d from the face of the loaded area, constructed so as to minimise its length (see in Figure 8.3).

\subsection*{8.3.2 Openings}

Where openings in the slab exist within \(6 d\) from the face of the loaded area, part of the control perimeter will be ineffective as indicated in Figure 8.6.

a) Where \(I_{1} I_{2}\)

b) Where \(I_{1}>I_{2}\)

Figure 8.6
Control perimeter near an opening

\subsection*{8.3.3 Perimeter columns}

For edge or corner columns (or loaded areas), the basic control perimeter \(u_{1}\) shown in Figure 8.4 may be used for concentric loading. This perimeter must not be greater than the perimeter obtained for internal columns from using Figure 8.3 (see Section 8.3.1).

Where eccentricity of loads is interior to the slab, the reduced control perimeter, \(u_{1^{*}}\) shown in Figure 8.5 should be used as indicated in Section 8.2.3.

\subsection*{8.3.4 Column heads}

Where column heads are provided, distinction should be made between cases where \(I_{\mathrm{H}}>2 h_{\mathrm{H}}\) and where \(l_{\mathrm{H}}<2 h_{\mathrm{H}}\)
where
\(I_{H}=\) projection of head from the column
\(h_{H}=\) height of head below soffit of slab

Where \(I_{\mathrm{H}}<2 h_{\mathrm{H}}\) punching shear needs to be checked only in the control section outside the column head (see Figure 8.7). Where \(I_{H}>2 h_{H}\) the critical sections both within the head and slab should be checked (see Figure 8.8).

Figure 8.7
Slab with enlarged column head where \(I_{H}<2.0 h_{H}\)

Figure 8.8
Slab with enlarged column head where \(l_{\mathrm{H}}>\mathbf{2} \boldsymbol{h}_{\mathrm{H}}\)

\subsection*{8.4 Punching shear resistance without shear reinforcement}

The punching shear resistance of a slab should be assessed for the basic control section according to Section 8.3. The design punching shear resistance may be calculated as follows:
The design value for the shear resistance is given by:
\(v_{\mathrm{Rd}, \mathrm{c}}=\left(0.18 / \gamma_{\mathrm{C}}\right) k\left(100 \rho_{\mathrm{l}} f_{\mathrm{ck}}\right)^{1 / 3}+0.15 \sigma_{\mathrm{cp}}\)
\[
\geq 0.035 k^{1.5} f_{c k}^{0.5}+0.15 \sigma_{\mathrm{cp}}
\]
where
\(k=1+(200 / d)^{0.5} \leq 2.0(d\) in mm)
\(\gamma_{C}=1.5\)
\(\rho_{\mathrm{l}}=\left(\rho_{\mathrm{ly},}, \rho_{\mathrm{lz}}\right)^{0.5} \leq 0.02\)
where
\(\rho_{\mathrm{ly}}, \rho_{\mathrm{lz}}=\) reinforcement ratios in the \(y\) and \(z\) directions respectively. The values should be calculated as mean values, taking into account a slab width equal to the column width plus 3d each side
\[
\begin{aligned}
\sigma_{\mathrm{cp}} & =\left(\sigma_{\mathrm{cy}}+\sigma_{\mathrm{cz}}\right) / 2 \\
\sigma_{\mathrm{cy}} & =N_{\mathrm{Ed}, \mathrm{y}} / A_{\mathrm{cy}} \\
\sigma_{\mathrm{cz}} & =N_{\mathrm{Ed}, \mathrm{Z}} A_{\mathrm{cz}}
\end{aligned}
\]
where
\[
\left.\begin{array}{rl}
N_{\mathrm{Ed}, \mathrm{y}}, N_{\mathrm{Ed}, \mathrm{z}}= & \begin{array}{l}
\text { longitudinal forces across the full bay for internal columns and } \\
\\
\text { the longitudinal forces across the control section for edge }
\end{array} \\
& \text { columns. The force may be from a load or prestressing action }
\end{array}\right\}
\]

\subsection*{8.5 Punching shear resistance with shear reinforcement}

BS EN 1992-1-1
6.4.5

BS EN 1992-1-1
Exp. (6.52)
6.4.5(3)

Where shear reinforcement is required it should be calculated in accordance with the Expression below:
\(v_{\text {Rd,cs }}=0.75 v_{\text {Rd,c }}+1.5\left(d / s_{r}\right) A_{s w} f_{y w d, e f}\left(1 / u_{1} d\right) \sin \alpha\)
where
\(A_{\mathrm{sw}}=\) area of one perimeter of shear reinforcement around the column \(\left(\mathrm{mm}^{2}\right)\) (for \(A_{\text {sw,min }}\) see Section 15.4.3)
\(S_{r} \quad=\) radial spacing of perimeters of shear reinforcement (mm)
\(f_{\text {ywd,ef }}=\) effective design strength of reinforcement \((250+0.25 d) \leq f_{\text {ywd }}\)
d \(=\) mean effective depth in the two orthogonal directions (mm)
\(u_{1}=\) basic control perimeter at \(2 d\) from the loaded area (see Figure 8.3)
\(\sin \alpha=1.0\) for vertical shear reinforcement
\(\alpha \quad=\) angle between the shear reinforcement and plane of the slab
Assuming vertical reinforcement
\(A_{\text {sw }}=\left(v_{\text {Ed }}-0.75 v_{\text {Rd, }, C}\right) s_{r} u_{1} /\left(1.5 f_{\text {ywd,ef }}\right)\) per perimeter

\subsection*{8.6 Punching shear resistance adjacent to columns}

Adjacent to the column the punching shear resistance is limited to a maximum of:
\(v_{\mathrm{Ed}}=\beta V_{\mathrm{Ed}} / u_{0} d \leq v_{\mathrm{Rd}, \max }\)
where
\(\beta=\) factor dealing with eccentricity (see Section 8.2)
\(V_{\mathrm{Ed}}=\) design value of applied shear force
\(d=\) mean effective depth
\(u_{0}=\) length of column periphery for an interior column
\(=2\left(c_{1}+c_{2}\right)\) for interior columns
\(=c_{2}+3 d \leq c_{2}+2 c_{1}\) for edge columns
\(=3 d \leq c_{1}+c_{2}\) for corner columns
where
\(c_{1}=\) column depth (for edge columns, measured perpendicular to the free edge)
\(c_{2}=\) column width as illustrated in Figure 8.5
\(v_{\mathrm{Rd}, \text { max }}=0.5 v f_{\mathrm{cd}}\)
where
\[
v=0.6\left[1-\left(f_{c k} / 250\right)\right]
\]

\subsection*{8.7 Control perimeter where shear reinforcement is no longer required, \(u_{\text {out }}\)}

Shear reinforcement is not required at a perimeter where the shear stress due to the effective shear force does not exceed \(v_{\text {Rd, },}\). The outermost perimeter of shear reinforcement should be placed at a distance not greater than \(1.5 d\) within the perimeter where reinforcement is no longer required. See Figures 8.9, 15.6 and 15.7.

Figure 8.9
Control perimeters at internal columns

\subsection*{8.8 Distribution of shear reinforcement}

The Expression given in Section 8.5 assumes a constant area of shear reinforcement on each perimeter moving away from the loaded area as shown in Figure 8.9. In cases where the reinforcement area varies on successive perimeters, the required shear reinforcement may be determined by checking successive perimeters, \(u_{\mathrm{i}}\) between the basic control perimeter and the perimeter \(u_{\text {out }}\), to ensure that the shear reinforcement of area \(\Sigma A_{s w}\) satisfies the following expression:
\(\Sigma A_{\mathrm{SW}}=\frac{\left(v_{\mathrm{Ed}}-0.75 v_{\mathrm{Rd}, \mathrm{c}}\right) u_{\mathrm{i}} d}{f_{\mathrm{ywd}, \mathrm{ef}} \sin \alpha}\)
where \(\Sigma A_{s w}\) is the total shear reinforcement as shown in Figure 8.10, placed within an area enclosed between the control perimeter \(u_{\mathrm{i}}\) chosen and one \(2 d\) inside \(i t\), except that shear reinforcement within a distance of \(0.3 d\) from the inner perimeter and \(0.2 d\) from the control perimeter should be ignored. Further guidance and background are given by Hendy \& Smith [20]

Figure 8.10
Reinforcement to include in punching shear check

\subsection*{8.9 Punching shear resistance of foundation bases}

BS EN 1992-1-1
6.4.2(6)

BS EN 1992-1-1 6.4.4(2)

BS EN 1992-1-1
Exp. (6.51)

In addition to the verification at the basic control perimeter at \(2 d\) from the face of the column, perimeters within the basic perimeter should also be checked for punching resistance. In cases where the depth of the base varies, the effective depth of the base may be assumed to be that at the perimeter of the loaded area. See Figure 8.11.

For concentric loading the net applied force is
\(V_{\mathrm{Ed}, \text { red }}=V_{\mathrm{Ed}}-\Delta V_{\mathrm{Ed}}\)
where
\(V_{\mathrm{Ed}}=\) applied shear force
\(\Delta V_{E d}=\) net upward force within the perimeter considered, i.e. upward pressure from soil minus self-weight of base.
When a column transmits an axial load \(V_{E d}\) and a moment \(M_{E d}\), the punching shear stress is given by the following expression:
\(v_{\mathrm{Ed}}=\left(V_{\mathrm{Ed}, \text { red }} / u d\right)\left[1+k M_{\mathrm{Ed}} u /\left(V_{\mathrm{Ed}, \text { red }} W\right)\right]\)
where
\(u=\) the perimeter being considered
\(k=\) a coefficient depending on the ratio of the column dimensions shown in Figure 8.2 and Table 8.1
\(W=W_{1}\)

For a square column and a general perimeter at \(r_{\mathrm{i}}\) with length \(u_{\mathrm{i}}\) :
\(W_{1}=\frac{c_{1}{ }^{2}}{2}+c_{1} c_{2}+2 c_{2} r_{i}+4 r_{i}{ }^{2}+\pi r_{i} c_{1}\)

The punching shear resistance \(v_{\text {Rd, }, ~}\) given in Section 8.4 may be enhanced for column bases by multiplying the Expressions by 2d/a, where \(a\) is the distance of the perimeter considered from the periphery of the column.

Figure 8.11
Depth of control section in a footing with variable depth

\section*{9 Torsion}

\subsection*{9.1 General}

> Torsional resistance should be verified in elements that rely on torsion for static equilibrium. In statically indeterminate building structures in which torsion arises from consideration of compatibility and the structure is not dependent on torsion for stability, it will normally be sufficient to rely on detailing rules for minimum reinforcement to safeguard against excessive cracking, without the explicit consideration of torsion at ULS.
> In Eurocode 2, torsional resistance is calculated by modelling all sections as equivalent thinwalled sections. Complex sections, such as T-sections are divided into a series of sub-sections and the total resistance is taken as the sum of the resistances of the individual thin-walled sub-sections.
> The same strut inclination \(\theta\) should be used for modelling shear and torsion. The limits for cot \(\theta\) noted in Section 7 for shear also apply to torsion.

\subsection*{9.2 Torsional resistances}

The design torsional resistance moment
\(T_{\mathrm{Rd}, \text { max }}=2 v \alpha_{\mathrm{cw}} f_{\mathrm{cd}} A_{\mathrm{k}} t_{\mathrm{ef}, \mathrm{i}} \sin \theta \cos \theta\)
where
\(\boldsymbol{v}=0.6\left[1-\left(f_{\text {ck }} / 250\right)\right]\)
\(A_{\mathrm{k}}=\) area enclosed by the centre lines of connecting walls including the inner hollow area (see Figure 9.1)
\(t_{\text {ef,i }}=\) effective wall thickness (see Figure 9.1). It may be taken as A/u but should not be taken as less than twice the distance between edge (the outside face of the member) and centre of the longitudinal reinforcement. For hollow sections the real thickness is an upper limit
\(\theta=\) angle of the compression strut
\(\alpha_{c w}=\) coefficient taking account of the state of stress in the compression chord (see Table 7.2)
\(=1\) for non-prestressed structures
\(=\left(1+\sigma_{\mathrm{cp}} / f_{\mathrm{cd}}\right)\) for \(0<\sigma_{\mathrm{cp}} \leq 0.25 f_{\mathrm{cd}}\)
\(=1.25\) for \(0.25 f_{c d}<\sigma_{c p} \leq 0.5 f_{c d}\)
\(=2.5\left(1-\sigma_{c p} / f_{c d}\right)\) for \(0.5 f_{c d}<\sigma_{c p}<1.0 f_{c d}\)
where
\(\sigma_{\mathrm{cp}}=\) mean compressive stress, measured positive, in the concrete due to the design axial force.
\(\sigma_{\mathrm{cp}}\) should be obtained by averaging it over the concrete section taking account of the reinforcement. The value of \(\sigma_{\mathrm{cp}}\) need not be calculated at a distance less than \(0.5 d \cot \theta\) from the edge of the support.

BS EN 1992-1-1 6.3.1

BS EN 1992-1-1 fig. 6.11

ENV 1992-1-1 Exp. (4.43) \({ }^{[21]}\)

BS EN 1992-2 Exp. (6.28)

BS EN 1992-2
6.3.2(103)

Figure 9.1
Notations used in Section 9

The torsional resistance of a solid rectangular section with shear reinforcement on the outer periphery \(T_{\text {Rd,max }}\) may be deduced from the general expression, assuming \(t_{\text {eff }}=A / u\) :
\(T_{\text {Rd, max }}=2 v \alpha_{c w} f_{c d} k_{2} b^{3} \sin \theta \cos \theta\)
where
\(k_{2}=\) coefficient obtained from Table 9.1
\(b=\) breadth of the section (<h, depth of section)

Table 9.1
Values of \(\boldsymbol{k}_{\mathbf{2}}\)
\begin{tabular}{|l|l|l|l|l|}
\hline \(\boldsymbol{h} / \boldsymbol{b}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline \(\boldsymbol{k}_{\mathbf{2}}\) & 0.141 & 0.367 & 0.624 & 0.864 \\
\hline
\end{tabular}

Torsional resistance governed by the area of closed links is given by:
\[
\begin{array}{rl}
T_{\mathrm{Rd}}=A_{\mathrm{sw}} & 2 A_{\mathrm{k}} \cot \theta f_{\mathrm{ywd}} / \mathrm{s} \\
\text { where } \\
A_{\mathrm{sw}} & =\text { area of link reinforcement } \\
f_{\mathrm{yw}, \mathrm{~d}} & =\text { design strength of the link reinforcement } \\
\mathrm{S} & =\text { spacing of links }
\end{array}
\]

The required area of longitudinal reinforcement for torsion, \(\Sigma A_{s l}\), may be calculated from:
\(\Sigma A_{\text {sl }} f_{\text {yd }}=T_{\text {Ed }} u_{\mathrm{k}} \cot \theta /\left(2 A_{\mathrm{k}}\right)\)
where
\(\begin{array}{ll}T_{\mathrm{Ed}} & =\text { applied design torsion } \\ U_{\mathrm{k}} & =\text { perimeter of the area } A_{\mathrm{k}}\end{array}\)
In compressive chords, the longitudinal reinforcement may be reduced in proportion to the available compressive force. In tensile chords, the longitudinal reinforcement for torsion should be added to the other reinforcement. The longitudinal reinforcement should generally be distributed over the length of side \(z_{i}\), (side length of wall \(i\) defined by the distance between the intersection points with the adjacent walls), but for smaller sections it may be concentrated at the ends of this length.

Bonded prestressing tendons can be taken into account limiting their stress increase to \(\Delta \sigma_{\mathrm{p}} \leq 500 \mathrm{MPa}\). In that case, \(\Sigma A_{\mathrm{sl}} f_{\mathrm{yd}}\) in Expression (6.28) is replaced by \(\Sigma A_{\mathrm{sl}} f_{\mathrm{yd}}+A_{\mathrm{p}} \Delta \sigma_{\mathrm{p}}\).

\subsection*{9.3 Combined torsion and shear}

In solid sections the following relationship should be satisfied:
\(\left(T_{\mathrm{Ed}} / T_{\mathrm{Rd}, \max }\right)+\left(V_{\mathrm{Ed}} / V_{\mathrm{Rd}, \max }\right) \leq 1.0\)
where
\(T_{\mathrm{Rd}, \max }=\) design torsional resistance moment
\(=2 v \alpha_{c w} f_{c d} A_{\mathrm{k}} t_{\mathrm{ef,i}} \sin \theta \cos \theta\) as in Section 9.2.
\(V_{R d, \text { max }}=\) maximum design shear resistance
\(=\alpha_{\mathrm{cw}} b_{\mathrm{w}} \mathrm{z} \boldsymbol{v}_{1} f_{\mathrm{cd}}(\cot \theta+\cot \alpha) /\left(1+\cot ^{2} \theta\right)\) as in Section 7.3.2.
The effects of torsion and shear for both hollow and solid members may be superimposed, assuming the same value for the strut inclination \(\theta\). The limits for \(\theta\) given in Section 7.3.2 are also fully applicable for the case of combined shear and torsion.

For box sections, each wall should be verified separately, for the combination of shear forces derived from shear and torsion (Figure 9.2).

BS EN 1992-2
fig. 6.104

Figure 9.2
Internal actions combination within the different walls of a box section

\section*{10 Strut-and-tie models, bearing zones and partially loaded areas}

\subsection*{10.1 Design with strut-and-tie models}

\subsection*{10.1.1 Struts}

BS EN 1992-1-1 6.5.2

BS EN 1992-1-1
fig. 6.23

BS EN 1992-1-1
fig. 6.24

Figure 10.2
Design strength of concrete struts with transverse tension

The design strength for concrete struts should be reduced in cracked compression zones and, unless a more rigorous approach is used, may be calculated from the following Expression (see Figure 10.2).
\(\sigma_{\text {Rd, } \max }=0.6\left(1-f_{c k} / 250\right) f_{c d}\)
where
\[
f_{c d}=1.0 f_{c k} / 1.5
\]

\subsection*{10.1.2 Ties}

Reinforcement required to resist the forces at the concentrated nodes may be smeared over a length (see Figure 10.3). When the reinforcement in the node area extends over a considerable length of an element, the reinforcement should be distributed over the length where the compression trajectories are curved (ties and struts). The tensile force, \(T\), may be obtained by:
\(\square\) For partial discontinuity regions (\(b \leq H / 2\))
\[
T=(b-a) F / 4 b
\]
- For full discontinuity regions \((b>H / 2)\)
\(T=(1-0.7 a / h) F / 4\)

Figure 10.3
Parameters for the determination of transverse tensile forces in a compression field with smeared reinforcement

\subsection*{10.1.3 Nodes}

The rules for nodes also apply to regions where concentrated forces are transferred in a member and which are not designed by the strut-and-tie method. The forces acting at nodes should be in equilibrium. Transverse tensile forces perpendicular to an inplane node should be considered.

The dimensioning and detailing of concentrated nodes are critical in determining their loadbearing resistance. Concentrated nodes may develop, for example, where point loads are applied, at supports, in anchorage zones with concentration of reinforcement or prestressing tendons, at bends in reinforcing bars, and at connections and corners of members.

The design values for the compressive stresses within nodes may be determined in three ways:
In compression nodes where no ties are anchored at the node (see Figure 10.4)
\(\sigma_{R d, \text { max }}=1.0\left(1-f_{c k} / 250\right) f_{c d}\)
where
\[
\begin{aligned}
\sigma_{\text {Rd, max }} & =\text { maximum stress which can be applied at the edges of the node } \\
f_{\mathrm{cd}} & =0.85 \quad f_{\mathrm{ck}} / 1.5
\end{aligned}
\]

BS EN 1992-1-1 fig. 6.26

Figure 10.4
Compression node without ties

BS EN 1992-1-1 fig. 6.27

In compression-tension nodes with anchored ties provided in one direction (see Figure 10.5)
\(\sigma_{\text {Rd }, \text { max }}=0.85\left(1-f_{c k} / 250\right) f_{c d}\)
where
\(\sigma_{\mathrm{Rd}, \text { max }}\) is the maximum of \(\sigma_{\mathrm{Rd}, 1}\) and \(\sigma_{\mathrm{Rd}, 2}\) \(f_{c d}=0.85 f_{c k} / 1.5\)

Figure 10.5
Compression-tension node with reinforcement provided in one direction
In compression-tension nodes with anchored ties provided in more than one direction (see Figure 10.6),
\(\sigma_{\text {Rd,max }}=0.75\left(1-f_{c k} / 250\right) f_{c d}\)
where
\[
f_{c d}=0.85 \quad f_{c k} / 1.5
\]

Figure 10.6
Compression-tension node with reinforcement provided in two directions

The anchorage of the reinforcement in compression-tension nodes starts at the beginning of the node; in the case of a support anchorage, starting at its inner face (see Figure 10.5). The anchorage length should extend over the entire node length. In certain cases, the reinforcement may also be anchored behind the node.

\subsection*{10.2 Partially loaded areas}

For a uniform distribution of load on an area \(A_{c 0}\) (see Figure 10.7) the concentrated resistance force may be determined as follows:
\(F_{\text {Rdu }}=A_{c 0} f_{c d}\left(A_{c 1} / A_{c 0}\right)^{0.5} \leq 3.0 f_{c d} A_{c 0}\)
where
\(A_{c 0}=\) loaded area,
\(A_{c 1}=\) maximum design distribution area with a similar shape to \(A_{c 0}\)
\(f_{c d}=0.85 f_{c k} / 1.5\)
The design distribution area \(A_{\mathrm{C} 1}\) required for the resistance force \(F_{\text {Rdu }}\) should correspond to the following conditions:
- The height for the load distribution in the load direction should correspond to the conditions given in Figure 10.7.
- The centre of the design distribution area \(A_{c 1}\) should be on the line of action passing through the centre of the load area \(A_{c 0}\).
- If there is more than one compression force acting on the concrete cross-section, the designed distribution areas should not overlap.

Reinforcement should be provided to resist the tensile forces due to the effect of actions, the rules for strut and tie may be used.

Transverse tensile forces can arise in the localised area near a concentrated load and also from any further spread of load outside the localised area. The strut-and-tie model used should account for both of these potential sources of transverse tensile forces Further guidance and background are given by Hendy \& Smith \({ }^{[20]}\).

Figure 10.7
Design distribution for partially loaded areas

\subsection*{10.3 Bearing zones of bridges}

For bearing zones of bridges, Section 10.2 for partially loaded areas should be used, noting the following.

For concrete classes equal to or higher than C55/67, the concentrated resistance force should be calculated using the following Expression:
\[
F_{\mathrm{Rdu}}=A_{\mathrm{co}} f_{\mathrm{cd}}\left(0.46 f_{\mathrm{ck}}^{2 / 3}\right) /\left(1+0.1 f_{\mathrm{ck}}\right) \times\left(A_{\mathrm{c} 1} / A_{\mathrm{c} 0}\right)^{0.5} \leq 3.0 A_{\mathrm{co}} f_{\mathrm{cd}}\left(0.46 f_{\mathrm{ck}}\right) /\left(1+0.1 f_{\mathrm{ck}}{ }^{2 / 3}\right)
\]

The distance from the edge of the loaded area to the free edge of the concrete section should not be less than \(1 / 6\) of the corresponding dimension of the loaded area measured in the same direction. In no case should the distance to the free edge be taken as less than 50 mm .

In order to avoid edge sliding, uniformly distributed reinforcement parallel to the loaded face should be provided to the point at which local compressive stresses are dispersed. This point is determined by drawing a line at an angle, \(\theta\left(30^{\circ}\right)\), to the direction of load application from the edge of the section to intersect with the opposite edge of the loaded surface, as shown in Figure 10.8. The reinforcement provided to avoid edge sliding should be adequately anchored.

Figure 10.8

Edge sliding mechanism

The reinforcement provided in order to avoid edge sliding \(\left(A_{r}\right)\) should be calculated in accordance with the expression \(A_{r} f_{y d} \geq F_{\text {Rdu }} / 2\).

\section*{11 Prestressed members and structures}

\subsection*{11.1 General}

The section provides guidance that is specific to prestressed concrete using stressed tendons. In general, prestress is introduced in the action combinations defined in BS EN 1990 as part of the loading cases and its effects should be included in the applied internal moment and axial force.

The contribution of the prestressing tendons to the resistance of the section should be limited to their additional strength beyond prestressing. This requirement is most simply achieved by treating the secondary effects of prestress as an applied action (i.e. a load), whilst omitting the primary effects of the design prestressing force. This may be calculated assuming that the origin of the stress-strain relationship of the tendons is displaced by the effects of prestressing.

\subsection*{11.2 Brittle fracture}

Brittle failure of the member caused by failure of prestressing tendons should be avoided by using one of three methods given below

\subsection*{11.2.1 Verification}

Verify the load capacity using a reduced area of prestress as follows:
- Calculate the applied bending moment due to the frequent combination of actions \(M_{\text {freq }}\).
- Determine the reduced area of prestress, \(A_{\mathrm{p}, \text { Red }}\), that results in the tensile stress reaching \(f_{\text {ctm }}\) at the extreme tension fibre when the section is subject to the bending moment calculated above.
\(A_{p, \text { Red }}=\left(M_{\text {freq }} / Z-f_{c t m}\right) /\left[\sigma_{p}\left(1 / A_{c}+e / Z\right)\right]\)
where
\(Z \quad=\) section modulus
\(f_{\mathrm{ctm}}=\) mean value of concrete cylinder compressive strength
\(\sigma_{\mathrm{p}}=\) stress in tendons just prior to cracking
\(A_{c}=\) area of concrete
\(e^{c}=\) eccentricity of the tendons
Further guidance is given by Hendy \& Smith \({ }^{[20]}\)
- Using this reduced area of prestress, calculate the ultimate flexural capacity. It should be ensured that this exceeds the bending moment due to the frequent combination. Redistribution of internal actions within the structure may be taken into account for this verification and the ultimate bending resistance should be calculated using the material partial factors for accidental design situations given in Table 2.9.
\[
\begin{aligned}
& \text { Assuming there is no conventional reinforcement then: } \\
& \begin{aligned}
& M_{\text {freq }} \geq\left(f_{c t m} z_{s}\right) /\left[\left(z_{s} / Z\right)-\left[\sigma_{p}\left(1 / A_{c}+e / Z\right) / f_{p 0.1 \mathrm{k}}\right]\right] \\
& \text { where } \\
& z_{s}=\text { lever arm for the prestress, where } A_{p, \text { Red }} \text { has been used to determine the } \\
& \quad \text { accidental ultimate limit state. } \\
& f_{c t m}=\text { mean value of concrete cylinder compressive strength } \\
& \sigma_{p}=\text { stress in tendons just prior to cracking }
\end{aligned}
\end{aligned}
\]
\[
\begin{aligned}
& A_{c}=\text { area of concrete } \\
& e^{=}=\text {eccentricity of the tendons }
\end{aligned}
\]

Further guidance is given by Hendy \& Smith \({ }^{[20]}\)

\subsection*{11.2.2 Minimum provision}

BS EN 1992-2
Exp. (6.101b)

The minimum reinforcement area, \(A_{5, \text { min }}\), is given below. Reinforcing steel provided for other purposes may be included in \(A_{s, \text { min }}\).
\(A_{s, \text { min }}=M_{\text {rep }} /\left(z_{s} f_{y k}\right)\)
where
\[
\begin{aligned}
M_{\text {rep }}= & \text { cracking bending moment calculated using an appropriate tensile strength, } \\
& f_{\text {ctk, } 0.05 \text { at the extreme tension fibre of the section, ignoring any effect of }} \\
& \text { prestressing. At the joint of segmental precast elements } M_{\text {rep }} \text { should be assumed } \\
& \text { to be zero } \\
z_{\mathrm{s}}= & \text { lever arm at the ultimate limit state related to the reinforcing steel }
\end{aligned}
\]

This minimum reinforcement steel area should be provided in regions where tensile stresses occur in the concrete under the characteristic combination of actions. In this check the secondary effects of prestressing should be considered and the primary effects should be ignored.

For pretensioned members, Expression (6.101a) should be applied using one of the alternative approaches described below:
- Tendons with concrete cover at least 1.0 times the minimum specified in Figure 4.1 are considered as effective in \(A_{s, \text { min }}\). A value of \(z_{s}\) based on the effective strands is used in the expression and \(f_{y k}\) is replaced with \(f_{\mathrm{p} 0.1 \mathrm{k}}\).
- Tendons subject to stresses lower than \(0.6 f_{\mathrm{pk}}\) after losses under the characteristic combination of actions are considered as fully active. In this case the following requirement should be met.
\(A_{\mathrm{s}, \text { min }} f_{\mathrm{yk}}+A_{\mathrm{p}} \Delta \sigma_{\mathrm{p}} \geq M_{\text {rep }} / z\)
where
\[
\Delta \sigma_{\mathrm{p}}=\text { smaller of } 0.4 f_{\mathrm{ptk}} \text { and } 500 \mathrm{MPa}
\]
- To ensure adequate ductility the minimum reinforcing steel area \(A_{s, \text { min }}\), in continuous beams should extend to the intermediate support of the span considered. However this extension is not necessary if, at the ultimate limit state, the resisting tensile capacity provided by reinforcing and prestressing steel above the supports, calculated with the characteristic strength \(f_{\mathrm{yk}}\) and \(f_{\mathrm{p} 0.1 \mathrm{k}}\) respectively, is less than the resisting compressive capacity of the bottom flange. This means that the failure of the compressive zone is not likely to occur, and can be assessed as follows:
\(A_{\mathrm{s}} f_{\mathrm{yk}}+1.0 A_{\mathrm{p}} f_{\mathrm{p} 0,1 \mathrm{k}}<t_{\text {inf }} b_{0} 1.0 f_{\mathrm{ck}}\)
where
\(t_{\text {inf }}=\) the thickness of the bottom flange of the section. In case of T-sections, \(t_{\text {inf }}\) is taken as equal to \(b_{0}\)
\(b_{0}=\) the width of the bottom flange of the section
\(A_{s}=\) the area of reinforced steel in the tensile zone at the ultimate limit state
\(A_{p}=\) the area of prestressing steel in the tensile zone at the ultimate limit state

\subsection*{11.2.3 Inspection}

Agreement of an appropriate inspection regime with the relevant national authority on the basis of satisfactory evidence.

\subsection*{11.3 Prestressing force during tensioning}

\subsection*{11.3.1 Maximum stressing force}

The force applied to a tendon, \(P_{\max }\) (i.e. the force at the active end during tensioning) shall not exceed the following value:
\(P_{\text {max }}=A_{p} \sigma_{\mathrm{p}, \text { max }}\)
where
\[
\begin{aligned}
A_{\mathrm{p}} & =\text { cross-sectional area of the tendon } \\
\sigma_{\mathrm{p}, \max } & =\text { maximum stress applied to the tendon } \\
& =\operatorname{MIN}\left\{0.8 f_{\mathrm{pk}} ; 0.9 f_{\mathrm{p} 0,1 \mathrm{k}}\right\}
\end{aligned}
\]

BS EN 1992-1-1 5.10.2.1

Overstressing is permitted if the force in the jack can be measured to an accuracy of \(\pm 5 \%\) of the final value of the prestressing force. In such cases the maximum prestressing force \(P_{\max }\) may be increased to \(0.95 f_{p 0.1 \mathrm{k}} A_{\mathrm{p}}\) (e.g. for the occurrence of unexpectedly high friction in long-line pretensioning). For pre-tensioning this relaxation is intended to be used only where there are unforeseen problems during construction.

The concrete compressive stress in the structure resulting from the prestressing force and other loads acting at the time of tensioning or release of prestress, should be limited to:
\(\sigma_{\mathrm{c}} \leq 0.6 f_{\mathrm{ck}}(t)\)
where
\[
\begin{aligned}
f_{\mathrm{ck}}(t)= & \text { characteristic compressive strength of the concrete at time } t \text { when it is subjected } \\
& \text { to the prestressing force }
\end{aligned}
\]

For pretensioned elements the stress at the time of transfer of prestress may be increased to \(0.7 f_{c k}(t)\), if it can be justified by tests or experience that longitudinal cracking is prevented.
If the compressive stress permanently exceeds \(0.45 f_{c k}(t)\) the non-linearity of creep should be taken into account.

\subsection*{11.3.2 Prestress force}

The value of the initial prestress force \(P_{\text {m0 }}(x)\) (at time \(t=t_{0}\)) applied to the concrete immediately after tensioning and anchoring (post-tensioning) or after transfer of prestressing (pre-tensioning) is obtained by subtracting from the force at tensioning \(P_{\max }\) the immediate losses \(\Delta P_{i}(x)\) and should not exceed the following value:
\(P_{\text {m0 }}(x)=A_{\text {p }} \sigma_{\text {pmo }}(x)\)
where
\[
\begin{aligned}
\sigma_{\mathrm{pm0}}(x) & =\text { stress in the tendon immediately after tensioning or transfer } \\
& =\operatorname{MIN}\left\{0.75 f_{\mathrm{pk}} ; 0.85 f_{\mathrm{p} 0,1 \mathrm{k}}\right\}
\end{aligned}
\]

BS EN 1992-1-1 5.10.3(2)

At a given time \(t\) and distance \(x\) (or arc length) from the active end of the tendon the mean prestress force \(P_{\mathrm{m}, \mathrm{t}}(x)\) is equal to the maximum force \(P_{\max }\) imposed at the active end, minus the immediate losses and the time dependent losses:
\[
\begin{aligned}
& P_{\mathrm{m}, \mathrm{t}}(x)=P_{\mathrm{m0}}(x)-\Delta P_{\mathrm{c}+\mathrm{s+r}}(x) . \\
& \text { where }
\end{aligned} \quad \begin{aligned}
& P_{\mathrm{m}, \mathrm{t}}(x)=\begin{array}{l}
\text { mean value of the prestress force at the time } t>t_{0} \text { and should be } \\
\text { determined with respect to the prestressing method }
\end{array} \\
& \Delta P_{\mathrm{c}+\mathrm{s+r}}(x)=\begin{array}{l}
\text { change in prestress due to the result of creep, shrinkage of the concrete } \\
\text { and the long term relaxation of the prestressing steel }
\end{array} \\
& \text { Absolute values are considered for all the losses. }
\end{aligned}
\]

\subsection*{11.3.3 Immediate losses} 5.10.3(3)

BS EN 1992-1-1 5.10.5.1(2)

BS EN 1992-1-1 5.10.5.2(1)

BS EN 1992-1-1
5.10.5.2(2) \& (3)

When determining the immediate losses \(\Delta P_{i}(x)\) the following immediate influences should be considered for pre-tensioning and post-tensioning where relevant:

Losses due to elastic deformation of concrete, \(\Delta P_{\mathrm{el}}\).
For pre-tensioning:
\(\Delta P_{\mathrm{el}}(x)=A_{\mathrm{p}} E_{\mathrm{p}} \sigma_{\mathrm{c}}(x) / E_{\mathrm{cm}}(t)\)
where
\(E_{\mathrm{p}} \quad=\) modulus of elasticity of prestressing steel
\(E_{c m}(t)=\) modulus of elasticity of concrete at time, \(t\)
\(\sigma_{\mathrm{c}}(x)=\) stress in the concrete adjacent to the tendon at transfer
For post-tensioning:
\(\Delta P_{\mathrm{el}}=A_{\mathrm{p}} E_{\mathrm{p}} \Sigma\left(j \Delta \sigma_{\mathrm{c}}(t) / E_{\mathrm{cm}}(t)\right)\)
where
\(\Delta \sigma_{c}(t)=\) variation of stress in the concrete at the centre of gravity of the tendons applied at time \(t\)
\(j \quad=(n-1) / 2 n\) when considering losses before stressing. As an approximation \(j\) may be taken as \(1 / 2\)
\(=1\) for the variations due to permanent actions applied after prestressing
\(n \quad=\) number of identical tendons successively prestressed.
- Losses due to short term relaxation, \(\Delta P_{r}\) (e.g. loss due to relaxation of the prestressing during the period which elapses between the tensioning of the tendons and prestressing of the concrete).
- Losses due to friction, \(\Delta P_{\mu}(x)\), in post-tensioned tendons may be estimated from:
\(\Delta P_{\mu}(x)=P_{\max }\left(1-\mathrm{e}^{-\mu(\theta+\mathrm{kx})}\right)\)
where
\(\theta=\) sum of the angular displacements over a distance \(x\) (irrespective of direction or sign)
\(\mu=\) coefficient of friction between the tendon and its duct
\(k=\) unintentional angular displacement for internal tendons (per unit length)
\(x=\) distance along the tendon from the point where the prestressing force is equal to \(P_{\text {max }}\) (the force at the active end during tensioning)

The values \(\mu\) and \(k\) are given in the relevant European Technical Approval. In the absence of data given in a European Technical Approval the values for \(\mu\) given in Table 11.1 may be assumed. Unintended angular displacements for internal tendons will generally be in the range \(0.005<k\) < 0.01 per metre.

Table 11.1
Coefficients of friction, \(\mu\), for post-tensioned internal tendons and external unbonded tendons
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Tendon type} & \multirow[t]{2}{*}{Internal tendons \({ }^{\text {a }}\)} & \multicolumn{4}{|l|}{External unbonded tendons} \\
\hline & & Steel duct: non-lubricated & HDPE duct: non-lubricated & Steel duct: lubricated & HDPE duct: lubricated \\
\hline Cold drawn wire & 0.17 & 0.25 & 0.14 & 0.18 & 0.12 \\
\hline Strand & 0.19 & 0.24 & 0.12 & 0.16 & 0.10 \\
\hline Deformed bar & 0.65 & - & - & - & - \\
\hline Smooth round bar & 0.33 & - & - & - & - \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Key \\
a For tendons which fill about half of the duct
\end{tabular}} \\
\hline
\end{tabular}

Losses due to anchorage slip, \(\Delta P_{\text {sl }}\), which are available from the European Technical Approval.
- Losses due to friction at the bends (in the case of curved wires or strands).

\subsection*{11.3.4 Time-dependent losses of prestress}

A simplified method to evaluate time dependent losses at location x under the permanent loads is as follows:
\[
\Delta P_{c+s+r}=A_{p} \Delta \sigma_{p, c+s+r}=A_{p} \frac{\varepsilon_{c s} E_{p}+0.8 \Delta \sigma_{p r}+\frac{E_{p}}{E_{c m}} \varphi\left(t, t_{0}\right) \sigma_{c, Q p}}{1+\frac{E_{\mathrm{p}} A_{p}}{E_{c m} A_{c}}\left(1+\frac{A_{c}}{I_{c}} z_{c p} 2\right)\left[1+0.8 \varphi\left(t, t_{0}\right)\right]}
\]
where
\(A_{p} \quad=\) area of all the prestressing tendons at the location \(x\)
\(\Delta \sigma_{\mathrm{p}, \mathrm{C}+\mathrm{s}+\mathrm{r}}=\) absolute value of the variation of stress in the tendons due to creep, shrinkage and relaxation at location \(x\), at time \(t\)
\(\varepsilon_{\mathrm{cs}} \quad=\) estimated shrinkage strain, in absolute value
\(E_{\mathrm{p}} \quad=\) modulus of elasticity for the prestressing steel
\(E_{\mathrm{cm}} \quad=\) modulus of elasticity for the concrete
\(\Delta \sigma_{\mathrm{pr}} \quad=\) absolute value of the variation of stress in the tendons at location \(x\), at time \(t\), due to the relaxation of the prestressing steel. It is determined for a stress of \(\sigma_{\mathrm{p}}=\sigma_{\mathrm{p}}\left(G+P_{\mathrm{mo}}+\psi_{2} \mathrm{Q}\right)\), which is the initial stress in the tendons due to initial prestress and quasi-permanent actions
\(\varphi\left(t, t_{0}\right)=\) creep coefficient at a time \(t\) and load application at time \(t_{0}\)
\(\sigma_{\mathrm{c}, \mathrm{QP}} \quad=\) stress in the concrete adjacent to the tendons, due to self-weight and initial prestress and other quasi-permanent actions where relevant. The value of \(\sigma_{\mathrm{c}, \mathrm{QP}}\) may be the effect of part of self-weight and initial prestress or the effect of a full quasi-permanent combination of actions \(\left(\sigma_{c}\left(G+P_{m 0}+\psi_{2} \mathrm{Q}\right)\right)\), depending on the stage of construction considered
\(A_{c} \quad=\) area of the concrete section
\(I_{c} \quad=\) second moment of area of the concrete section
\(z_{\mathrm{cp}} \quad=\) distance between the centre of gravity of the concrete section and the tendons

Compressive stresses and the corresponding strains should be used with a positive sign. This Expression applies for bonded tendons when local values of stresses are used and for unbonded tendons when mean values of stresses are used. The mean values should be calculated between straight sections limited by the idealised deviation points for external tendons or along the entire length in case of internal tendons.

\subsection*{11.3.5 Effects of prestressing at ultimate limit state}

In general the design value of the prestressing force may be determined from
\(P_{\mathrm{d}, \mathrm{t}}(x)=\gamma_{\mathrm{p}}, P_{\mathrm{m}, \mathrm{t}}(x)\)

BS EN 1992-1-1 5.10.8 \& NA

For prestressed members with permanently unbonded tendons, it is generally necessary to take the deformation of the whole member into account when calculating the increase of the stress in the prestressing steel. If no detailed calculation is made, it may be assumed that the increase of the stress from the effective prestress to the stress in the ultimate limit state is
\[
\begin{aligned}
& 100 \mathrm{MPa} \text { unless the tendon is outwith } \beta_{\mathrm{d}} \text { from the tension face, in which case } \Delta \sigma_{\mathrm{p}, \mathrm{ULS}}=0 \text {. } \\
& \beta=0.1 \text { for } d \geq 1000 \mathrm{~mm} \\
& =0.25 \text { for } d \leq 500 \mathrm{~mm} \\
& \text { The value of } \beta \text { may be interpolated for the values of } d \text { between } 500 \mathrm{~mm} \text { and } 1000 \mathrm{~mm} \text {. }
\end{aligned}
\]

If the stress increase in external tendons is calculated using the deformation state of the overall member, non-linear analysis should be used.

\section*{12 Fatigue}

\subsection*{12.1 Verification conditions}

\section*{PD 6687-2}
7.6.1

BS EN 1992-2
6.8.1(102)

\subsection*{12.2 Internal forces and stresses for fatigue verification}

The stress calculation shall be based on the assumption of cracked cross-sections neglecting the tensile strength of concrete but satisfying compatibility of strains.

The effect of different bond behaviour of prestressing and reinforcing steel shall be taken into account by increasing the stress range in the reinforcing steel calculated under the assumption of perfect bond by the factor, \(\eta\), given by
\[
\eta=\frac{A_{\mathrm{s}}+A_{\mathrm{p}}}{A_{\mathrm{s}}+A_{\mathrm{p}} \sqrt{\xi\left(\phi_{\mathrm{s}} / \phi_{\mathrm{p}}\right)}}
\]
where:
\(A_{s}=\) area of reinforcing steel
\(A_{p}=\) area of prestressing tendon or tendons
\(\phi_{\mathrm{s}}=\) largest diameter of reinforcement
\(\phi_{\mathrm{P}}=\) diameter or equivalent diameter of prestressing steel
\(=1.6 \sqrt{ }{ }^{-} A_{p}\) for bundles
\(=1.75 \phi_{\text {wire }}\) for single 7 -wire strands where \(\phi_{\text {wire }}\) is the wire diameter
\(=1.20 \phi_{\text {wire }}\) for single 3-wire strands where \(\phi_{\text {wire }}\) is the wire diameter
\(\xi=\) ratio of bond strength between bonded tendons and ribbed steel in concrete. The value is subject to the relevant European Technical Approval. In the absence of this the values given in Table 12.1 may be used.

Table 12.1
Ratio of bond strength, \(\boldsymbol{\xi}\), between tendons and reinforcing steel
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Prestressing steel } & \(\boldsymbol{\xi}\) & \multicolumn{2}{|l|}{} \\
\cline { 2 - 4 } & Pre-tensioned & \multicolumn{2}{l|}{ Bonded, post-tensioned } \\
\cline { 3 - 5 } & & \(\leq\) C50/60 & \(\geq\) C70/85 \\
\hline Smooth bars and wires & Not applicable & 0.3 & 0.15 \\
\hline Strands & 0.6 & 0.5 & 0.25 \\
\hline Indented wires & 0.7 & 0.6 & 0.30 \\
\hline Ribbed bars & 0.8 & 0.7 & 0.35 \\
\hline \begin{tabular}{l}
Note \\
For intermediate values between C50/60 and C70/85 interpolation may be used.
\end{tabular} \\
\hline
\end{tabular}

BS EN 1992-1-1 table 6.2

In the design of the shear reinforcement the inclination of the compressive struts \(\theta_{\text {fat }}\) may be calculated using a strut-and-tie model or in accordance with
where
\(\theta=\) angle of compression struts to the beam axis assumed in ULS design (see Section 7.3.2).

\subsection*{12.3 Verification of concrete under compression or shear}

> S-N curves required to undertake a fatigue verification of concrete under compression or shear are unlikely to be available from National Authorities. In the absence of such data, the simplified approach given in BS EN 1992-2, Annex NN may be used for railway bridges, but no such option exists for highway bridges.

\section*{PD 6687-2} 7.6.2

The fatigue verification for concrete under compression may be assumed to be met if the following condition is satisfied:
\[
\begin{aligned}
& \frac{\sigma_{c, \text { max }}}{f_{\mathrm{cd}, \text { fat }}} \leq 0.5+0.45 \frac{\sigma_{\mathrm{c}, \text { min }}}{f_{\mathrm{cd}, \text { fat }}} \\
& \text { where }
\end{aligned} \quad \begin{aligned}
& \sigma_{\mathrm{c}, \text { max }}=\begin{array}{l}
\text { maximum compressive stress at a fibre under the frequent load combination } \\
\\
\sigma_{\mathrm{c}, \text { min }}
\end{array} \\
&=\begin{aligned}
& \text { minimum compressinive stress at the same fibre where } \sigma_{\mathrm{c}, \text { max }} \text { occurs. If } \sigma_{\mathrm{c}, \text { min }} \text { is a } \\
& f_{\mathrm{cd}, \text { fat }} \text { tensile stress, then } \sigma_{\mathrm{c}, \text { min }} \text { should be taken as } 0 \\
& \text { design fatigue strength of concrete }
\end{aligned} \\
&=0.85 \beta_{\mathrm{cc}}\left(t_{0}\right) f_{\mathrm{cd}}\left(1-\frac{f_{\mathrm{ck}}}{250}\right) \\
&=1.0 f_{\mathrm{ck}} / 1.5 \\
& f_{\mathrm{cd}} \\
& \beta_{\mathrm{cc}}\left(t_{0}\right)=\text { coefficient for concrete strength at first load application } \\
&=\exp \left\{s\left[1-\left(\frac{28}{t_{0}}\right)^{0.5}\right]\right\} \\
& \text { where } \\
& t_{0}=\text { time of the start of the cyclic loading on concrete in days } \\
& s=0.2 \text { for cement of strength Classes CEM 42.5R, CEM 52.5N and CEM 52.5R (Class R) } \\
&=0.25 \text { for cement of strength Classes CEM 32.5R, CEM 42.5 (Class N) } \\
&=0.38 \text { for cement of strength Class CEM 32.5 (Class S) }
\end{aligned}
\]

The maximum value for the ratio \(\sigma_{\mathrm{c}, \text { max }} / f_{\mathrm{cd}, \text { fat }}\) is given in Table 12.2.

BS EN 1992-1-1 6.8.7(4)

BS EN 1992-1-1 6.8.6(1)

\section*{PD 6687-2}
7.6.3

For members not requiring design shear reinforcement for the ultimate limit state it may be assumed that the concrete resists fatigue due to shear effects where the following apply:
for \(\frac{V_{E d, \text { min }}}{V_{E d, \text { max }}} \geq 0\) :
\(\frac{\left|V_{E d, \max }\right|}{\left|V_{R d, c}\right|} \leq 0.5+0.45 \frac{\left|V_{\text {Ed,min }}\right|}{\left|V_{R d, c}\right|}\left\{\begin{array}{l}\leq 0.9 \text { up to C50/60 } \\ \leq 0.8 \text { greater than C55/67 }\end{array}\right.\)
for \(\frac{V_{E d, \text { min }}}{V_{E d, \text { max }}}<0\) :
\(\frac{\left|V_{\mathrm{Ed}, \max }\right|}{\left|V_{\mathrm{Rd}, \mathrm{c}}\right|} \leq 0.5 \frac{\left|V_{\mathrm{Ed}, \text { min }}\right|}{\left|V_{\mathrm{Rd}, \mathrm{c}}\right|}\)
where
\[
\begin{aligned}
V_{\mathrm{Ed}, \max }= & \text { design value of the maximum applied shear force under frequent load } \\
& \text { combination }
\end{aligned}
\]

\subsection*{12.4 Limiting stress range for reinforcement under tension}

Adequate fatigue resistance may be assumed for reinforcing bars under tension if the stress range under the frequent cyclic load combined with the basic combination does not exceed 70 MPa for unwelded bars and 35 MPa for welded bars.

For UK highway bridges, the values in Tables 12.3 and 12.4 may be used for straight reinforcement. These are based on bars conforming to BS 4449. For bars not conforming to BS 4449, the rules for bars > 16 mm diameter should be used for all sizes unless the ranges for bars \(\leq 16 \mathrm{~mm}\) diameter can be justified.

Table 12.3
Limiting stress ranges - longitudinal bending for unwelded reinforcing bars in road bridges, MPa
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Span m} & \multicolumn{2}{|l|}{Adjacent spans loaded} & \multicolumn{2}{|l|}{Alternate spans loaded} \\
\hline & Bars \(\leq 16\) mm & Bars > 16 mm & Bars \(\leq 16\) mm & Bars > 16 mm \\
\hline \(\leq 3.5\) & 150 & 115 & 210 & 160 \\
\hline 5 & 125 & 95 & 175 & 135 \\
\hline 10 & 110 & 85 & 175 & 135 \\
\hline 20 & 110 & 85 & 140 & 110 \\
\hline 30 to 50 & 90 & 70 & 110 & 85 \\
\hline 100 & 115 & 90 & 135 & 105 \\
\hline \(\geq 200\) & 190 & 145 & 200 & 155 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Notes \\
1 Intermediate values may be obtained by linear interpolation. \\
\(\mathbf{2}\) This table applies to slabs but need only be applied to those slabs that do not conform to the criteria given in Section 12.1.
\end{tabular}} \\
\hline
\end{tabular}

Table 12.4
Limiting stress ranges - transverse bending for unwelded reinforcing bars in road bridges, MPa
\begin{tabular}{|l|l|l|}
\hline Span m & Bars \(\leq \mathbf{1 6} \mathbf{~ m m}\) & Bars > \(\mathbf{1 6} \mathbf{~ m m}\) \\
\hline \(\mathbf{\leq 3 . 5}\) & 210 & 160 \\
\hline \(\mathbf{5}\) & 120 & 90 \\
\hline \(\mathbf{1 0}\) & 70 & 55 \\
\hline \begin{tabular}{l}
Notes \\
\(\mathbf{1}\) Intermediate values may be obtained by linear interpolation. \\
\(\mathbf{2}\) This table applies to slabs but need only be applied to those slabs that do not conform to the \\
criteria given in Section 12.1.
\end{tabular} & \\
\hline
\end{tabular}

PD 6687-2 table 2B

If the stress range limits exceed the values given in Tables 12.3 and 12.4 (e.g. for reinforcement over the pier), full fatigue checks are to be carried out using the 'damage equivalent stress range' method, following the guidance given in Annex NN of BS EN 1992-2. The stress ranges are calculated using 'Fatigue Load Model 3', which represents a four-axle vehicle with an all up weight of 48 tonnes. Annex NN further increases this weight to 84 tonnes for intermediate supports and 67 tonnes for other areas.

\section*{13 Serviceability}

\subsection*{13.1 General}

The common serviceability limit states considered are:

BS EN 1992-1-1
7.1
- Stress limitation.
- Crack control.
- Deflection control.

In the calculation of stresses and deflections, cross-sections should be assumed to be uncracked provided that the flexural tensile stress does not exceed \(f_{c t, \text { eff }}\). The value of \(f_{c t, \text { eff }}\) may be taken as \(f_{\mathrm{ctm}}\) or \(f_{\mathrm{ctm}, \mathrm{fl}}\) provided that the calculation for minimum tension reinforcement is also based on the same value. For the purposes of calculating crack widths and tension stiffening \(f_{\text {ctm }}\) should be used.

\subsection*{13.2 Stress limitation}

Longitudinal cracks may occur if the stress level under the characteristic combination of loads exceeds a critical value. Such cracking may lead to a reduction of durability. In the absence of other measures, such as an increase in the cover to reinforcement in the compressive zone or confinement by transverse reinforcement, it is recommended that the compressive stress is limited to a value \(0.6 f_{c k}\) in areas exposed to environments of exposure classes XD, XF and XS (see Table 4.2). In the presence of confinement the maximum stress limit is \(0.66 f_{c k}\).

If the stress in the concrete under the quasi-permanent loads is less than \(0.45 f_{c k}\), linear creep may be assumed. If the stress in concrete exceeds \(0.45 f_{c k}\), non-linear creep should be considered (see Section 3.1.2).

For the appearance unacceptable cracking or deformation may be assumed to be avoided if, under the characteristic combination of loads, the tensile stress in the reinforcement does not exceed \(0.8 f_{\mathrm{yk}}\). Where the stress is caused by an imposed deformation, the tensile stress should not exceed \(1.0 f_{\text {yk }}\). The mean value of the stress in prestressing tendons should not exceed \(0.75 f_{\text {pk }}\). Crack control (Section 13.4) and deflection (Section 13.6) should also be checked.

\subsection*{13.3 Calculation of crack widths}

The crack width, \(w_{\mathrm{k}}\), may be calculated from following Expression:
\(w_{\mathrm{k}}=s_{\mathrm{r}, \text { max }}\left(\varepsilon_{\mathrm{sm}}-\varepsilon_{\mathrm{cm}}\right)\)
where
\(s_{r, \text { max }}=\) maximum crack spacing
\(\varepsilon_{s m}=\) mean strain in the reinforcement under the relevant combination of loads, including the effect of imposed deformations and taking into account the effects of tension stiffening. Only the additional tensile strain beyond the state of zero strain of the concrete at the same level is considered
\(\varepsilon_{\mathrm{cm}}=\) mean strain in the concrete between cracks
\(\varepsilon_{\mathrm{sm}}-\varepsilon_{\mathrm{cm}}\) may be calculated from the Expression:
\(\varepsilon_{\mathrm{sm}}-\varepsilon_{\mathrm{cm}}=\frac{\sigma_{\mathrm{s}}-k_{\mathrm{t}} \frac{f_{\mathrm{ct}, \mathrm{eff}}}{\rho_{\mathrm{ct}, \text { eff }}}\left(1+\alpha_{\mathrm{e}} \rho_{\mathrm{p}, \text { eff }}\right)}{E_{\mathrm{s}}} \quad 0.6 \frac{\sigma_{\mathrm{s}}}{E_{\mathrm{s}}}\)
where
\(\sigma_{\mathrm{s}}=\) stress in the tension reinforcement assuming a cracked section. For pretensioned members, \(\sigma_{\mathrm{s}}\) may be replaced by \(\Delta \sigma_{\mathrm{p}}\), which is the stress variation in prestressing tendons from the state of zero strain of the concrete at the same level
\(k_{\mathrm{t}}=\) factor dependent on the duration of the load
\(=0.6\) for short term loading
\(=0.4\) for long term loading
\(\alpha_{\mathrm{e}}=\) ratio \(E_{\mathrm{s}} / E_{\mathrm{cm}}\)
\(\rho_{\mathrm{p}, \text { eff }}=\left(A_{\mathrm{s}}+\xi_{1}^{2} A_{\mathrm{p}}{ }^{\prime}\right) / A_{\mathrm{c}, \text { eff }}\)
where
\(A_{p}{ }^{\prime} \quad=\) area of pre- or post-tensioned tendons within \(A_{c, \text { eff }}\)
\(A_{c, \text { eff }}=\) effective area of concrete in tension surrounding the reinforcement or prestressing tendons of depth, \(h_{c, \text { ef }}\), where \(h_{c, \text { ef }}\) is the lesser of \(2.5(h-d)\), \((h-x) / 3\) or \(h / 2\) (see Figure 13.3).
\(\xi_{1}=\) adjusted ratio of bond strength taking into account the different diameters of prestressing and reinforcing steel:
\[
=\left(\xi \phi_{\mathrm{S}} / \phi_{\rho}\right)^{0.5}
\]
\(\xi=\) ratio of bond strength of prestressing and reinforcing steel, according to Table 12.1
If only prestressing steel is used to control cracking, \(\xi_{1}=\xi^{0.5}\)
\(\phi_{\mathrm{s}}=\) largest bar diameter of reinforcing steel
\(\phi_{P}=\) equivalent diameter of tendon according to Section 12.2
In situations where bonded reinforcement is fixed at reasonably close centres within the tension zone (spacing \(\leq 5(c+\phi / 2)\), the maximum final crack spacing may be calculated from following Expression (see Figure 13.1):
\(s_{r, \max }=k_{3} c+k_{1} k_{2} k_{4} \phi / \rho_{\mathrm{p}, \text { eff }}\)

BS EN 1992-1-1
Exp. (7.11)
where
\(\phi=\) bar diameter. Where a mixture of bar diameters is used in a section, an equivalent diameter, \(\phi_{\text {eq }}\), should be used
where
\(\phi_{\mathrm{eq}}=\left(n_{1} \phi_{1}^{2}+n_{2} \phi_{2}\right) /\left(n_{1} \phi_{1}+n_{2} \phi_{2}\right)\)
\(n_{1}=\) number of bars of diameter \(\phi_{1}\)
\(n_{2}=\) number of bars of diameter \(\phi_{2}\)
\(k_{3}=3.4\)
\(c=\) cover to the longitudinal reinforcement. The nominal cover, \(c_{\text {nom }}\), may be used.
\(k_{1}=\) coefficient which takes account of the bond properties of the bonded reinforcement
\(=0.8\) for high bond bars
\(=1.6\) for bars with an effectively plain surface (e.g. prestressing tendons)

BS EN 1992-1-1
fig. 7.2

Figure 13.1
Crack width, \(w\), at concrete surface relative to distance from bar

BS EN 1992-1-1 Exp. (7.14)

BS EN 1992-2
7.3.1(105) \& NA

BS EN 1992-2
NA. NA. 2.2

PD 6687-2 8.2.1b)

PD 6687-2
8.2.2
\(k_{4}=0.425\)
\(k_{2}=\) coefficient which takes account of the distribution of strain
\(=0.5\) for bending
\(=1.0\) for pure tension
For cases of eccentric tension or for local areas, intermediate values of \(k_{2}\) should be used which may be calculated from the relation:
\(k_{2}=\left(\varepsilon_{1}+\varepsilon_{2}\right) /\left(2 \varepsilon_{1}\right)\)
\(\varepsilon_{1} \quad=\) greater tensile strain at the boundaries of the section considered, assessed on the basis of a cracked section
\(\varepsilon_{2} \quad=\) lesser tensile strain at the boundaries of the section considered, assessed on the basis of a cracked section

Where the spacing of the bonded reinforcement exceeds \(5(c+\phi / 2)\) (see Figure 13.1) or where there is no bonded reinforcement within the tension zone, an upper bound to the crack width may be found by assuming a maximum crack spacing:
\(s_{r, \text { max }}=1.3(h-x)\)
Where the angle between the axes of principal stress and the direction of the reinforcement, for members reinforced in two orthogonal directions, is significant \(\left(>15^{\circ}\right)\), then the crack spacing \(s_{r, \text { max }}\) may be calculated from the following expression:
\(s_{r, \text { max }}=1 /\left(\cos \theta / s_{r, \text { max }, y}+\sin \theta / s_{r, \text { max }, z}\right)\)
where
\[
\begin{aligned}
\theta= & \text { angle between the reinforcement in the } y \text { direction and the direction of the } \\
& \text { principal tensile stress } \\
s_{r, m a x, y}= & \text { crack spacing calculated in the } y \text {-direction } \\
s_{r, m a x, z}= & \text { crack spacing calculated in the z-direction }
\end{aligned}
\]

A limiting calculated crack width \(w_{\max }\), taking account of the proposed function and nature of the structure and the costs of limiting cracking, should be established. Due to the random nature of the cracking phenomenon, actual crack widths cannot be predicted. However, if the crack widths calculated in accordance with the models given in BS EN 1992-2 are limited to the values given in Table 13.1, the performance of the structure is unlikely to be impaired.

The decompression limit requires that all concrete within a certain distance of bonded tendons or their ducts should remain in compression under the specified loading. The distance within which all concrete should remain in compression should be taken as the value of \(c_{\text {min,dur }}\). Where the most tensile face of a section is not subject to XD or XS exposure but another face is, the decompression limit should require all tendons within 100 mm of a surface subject to XD or XS exposure to have a depth \(c_{\text {min,dur }}\) of concrete in compression between them and surfaces subject to XD or XS exposure.

Since the decompression limit of 100 mm is likely to be greater than the cover required for durability, this introduces an anomaly. For example, only 50 mm of concrete in compression might be deemed adequate to protect the tendons, whereas 60 mm of concrete in compression plus 40 mm not in compression would not, which is clearly illogical. Changing the distance from the recommended value of 100 mm to the cover required for durability, \(c_{\text {min,dur, }}\) is more logical.

In some situations, such as structures cast against the ground, \(\mathrm{c}_{\text {nom }}\) will be significantly greater than the cover required for durability. Where there are no appearance requirements it is reasonable to determine the crack width at the cover required for durability and verify that it does not exceed the relevant maximum crack width. This may be done by multiplying the crack width determined at the surface by \(\left(c_{\text {min,dur, }}+\Delta c_{\text {dev }}\right) / c_{\text {nom }}\) to give the crack width at the cover required for durability, and verifying that it is not greater than \(w_{\max }\). This approach assumes that the crack width varies linearly from zero at the bar. Given the accuracy of crack calculation methods this simplification is considered reasonable.

Table 13.1
Recommended values of \(w_{\text {max }}\) and relevant combination rules
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Exposure class \({ }^{\text {a }}\)} & Reinforced members and prestressed members without bonded tendons & Prestressed members with bonded tendons \\
\hline & Quasi-permanent load combination \({ }^{\text {b }}\) (mm) & Frequent load combination \({ }^{\text {b }}\) (mm) \\
\hline X0, XC1 & \(0.3^{\text {c }}\) & 0.2 \\
\hline XC2, XC3, XC4 & 0.3 & \(0.2{ }^{\text {d }}\) \\
\hline \[
\begin{aligned}
& \text { XD1, XD2, XD3 } \\
& \text { XS1, XS2, XS3 }
\end{aligned}
\] & 0.3 & \(0.2{ }^{\mathbf{e}}\) and decompression \\
\hline \multicolumn{3}{|l|}{a The exposure class considered, including at transfer, applies to the most severe exposure the surface will be subject to in service.} \\
\hline \multicolumn{3}{|l|}{b For the crack width checks under combinations which include temperature distribution, the resulting member forces should be calculated using gross section concrete properties and self-equilibrating thermal stresses within a section may be ignored.} \\
\hline \multicolumn{3}{|l|}{c For X0, XC1 exposure classes, crack width has no influence on durability and this limit is set to guarantee acceptable appearance. In the absence of appearance conditions this limit may be relaxed.} \\
\hline \multicolumn{3}{|l|}{d For these exposure classes, in addition, decompression should be checked under the quasipermanent combination of loads.} \\
\hline \multicolumn{3}{|l|}{e 0.2 applies to the parts of the member that do not have to be checked for decompression.} \\
\hline
\end{tabular}

\section*{BS EN 1992-2 \&} NA, table NA. 2

\subsection*{13.4 Control of cracking}

Where the minimum reinforcement given by Section 13.5 is provided, crack widths are unlikely to be excessive if:
- For cracking caused predominantly by restraint, the bar sizes given in Table 13.2 are not exceeded where the steel stress is the value obtained immediately after cracking (i.e. \(\sigma_{\mathrm{s}}\) in Section 13.5).
- For cracks caused mainly by loading, either the provisions of Table 13.2 or the provisions of Table 13.3 are complied with. The steel stress should be calculated on the basis of a cracked section under the relevant combination of actions.

For pre-tensioned concrete, where crack control is mainly provided by tendons with direct bond, Tables 13.2 and 13.3 may be used with a stress equal to the total stress minus prestress. For post-tensioned concrete, where crack control is provided mainly by ordinary reinforcement, the tables may be used with the stress in this reinforcement calculated with the effect of prestressing forces included.

The maximum bar diameter should be modified as follows:
Bending (at least part of section in compression):
\(\phi_{\mathrm{s}}=\phi_{\mathrm{s}}^{*}\left(f_{\mathrm{ct}, \mathrm{eff}} / 2.9\right) \frac{k_{\mathrm{c}} h_{\mathrm{cr}}}{2(h-d)}\)
Tension (uniform axial tension):
\(\phi_{\mathrm{s}}=\phi_{\mathrm{s}}^{*}\left(f_{\mathrm{ct}, \mathrm{eff}} / 2.9\right) h_{\mathrm{cr}} /(8(h-d))\)
where
\(\phi_{s}=\) adjusted maximum bar diameter
\(\phi_{s}=\) maximum bar size given in the Table 13.2
\(h=\) overall depth of the section
\(h_{\mathrm{cr}}=\) depth of the tensile zone immediately prior to cracking, considering the characteristic values of prestress and axial forces under the quasi-permanent combination of actions
d = effective depth to the centroid of the outer layer of reinforcement

\section*{BS EN 1992-1-1 7.3.3(2)}

BS EN 1992-1-1 table 7.2 N

BS EN 1992-1-1 table 7.3 N

Where all the section is under tension \(h-d\) is the minimum distance from the centroid of the layer of reinforcement to the face of the concrete (consider each face where the bar is not placed symmetrically).

Table 13.2
Maximum bar diameters for crack control
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{ Steel stress (MPa) } & \multicolumn{3}{|l|}{ Maximum bar size (mm) for crack widths of } \\
\cline { 2 - 5 } & \(\mathbf{0 . 4} \mathbf{~ m m}\) & \(\mathbf{0 . 3} \mathbf{~ m m}\) & \(\mathbf{0 . 2 ~ \mathbf { ~ m m }}\) \\
\hline \(\mathbf{1 6 0}\) & 40 & 32 & 25 \\
\hline \(\mathbf{2 0 0}\) & 32 & 25 & 16 \\
\hline \(\mathbf{2 4 0}\) & 20 & 16 & 12 \\
\hline \(\mathbf{2 8 0}\) & 16 & 12 & 8 \\
\hline \(\mathbf{3 2 0}\) & 12 & 10 & 6 \\
\hline \(\mathbf{3 6 0}\) & 10 & 8 & 5 \\
\hline \(\mathbf{4 0 0}\) & 8 & 6 & 4 \\
\hline \(\mathbf{4 5 0}\) & \(\mathbf{6}\) & 5 & - \\
\hline
\end{tabular}

Table 13.3
Maximum bar spacing for crack control
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Steel stress (MPa) } & \multicolumn{3}{|c|}{ Maximum bar spacing (mm) for maximum crack widths of } \\
\cline { 2 - 4 } & \(\mathbf{0 . 4} \mathbf{~ m m}\) & \(\mathbf{0 . 3} \mathbf{~ m m}\) & \(\mathbf{0 . 2} \mathbf{~ m m}\) \\
\hline \(\mathbf{1 6 0}\) & 300 & 300 & 200 \\
\hline \(\mathbf{2 0 0}\) & 300 & 250 & 150 \\
\hline \(\mathbf{2 4 0}\) & 250 & 200 & 100 \\
\hline \(\mathbf{2 8 0}\) & 200 & 150 & 50 \\
\hline \(\mathbf{3 2 0}\) & 150 & 100 & - \\
\hline \(\mathbf{3 6 0}\) & 100 & 50 & - \\
\hline
\end{tabular}

\subsection*{13.5 Minimum reinforcement areas of main bars}

If crack control is required, a minimum amount of bonded reinforcement is required to control cracking in areas where tension is expected. The required minimum areas of reinforcement \(A_{s, \text { min }}\) may be calculated as follows. In profiled cross-sections like T-beams and box girders, minimum reinforcement should be determined for the individual parts of the section (webs, flanges).
\(A_{s, \text { min }}=k_{c} k f_{c t, \text { eff }} A_{c t} / \sigma_{s}\)
where
\(A_{c t}=\) area of concrete within tensile zone. The tensile zone is that part of the section which is calculated to be in tension just before formation of the first crack
\(\sigma_{\mathrm{s}} \quad=\) absolute value of the maximum stress permitted in the reinforcement immediately after formation of the crack. This may be taken as the yield strength of the reinforcement, \(f_{y k}\). A lower value may, however, be needed to satisfy the crack width limits according to the maximum bar size or spacing indicated in Tables 13.2 and 13.3.
\(f_{c t, \text { eff }}=\) mean value of the tensile strength of the concrete effective at the time when the cracks may first be expected to occur.
\(=f_{\text {ctm }}\) or lower \(\left(f_{\text {ctm }}(t)\right)\) if cracking is expected earlier than 28 days A minimum value of 2.9 MPa should be taken
\(k=\) coefficient which allows for the effect of non-uniform self-equilibrating stresses, which lead to a reduction of restraint forces
\(=1.0\) for webs with \(h \leq 300 \mathrm{~mm}\) or flanges with widths less than 300 mm ,
\(=0.65\) for webs with \(h \geq 800 \mathrm{~mm}\) or flanges with widths greater than 800 mm , intermediate values may be interpolated
\(k_{c}=\) coefficient which takes account of the stress distribution within the section immediately prior to cracking and of the change of the lever arm:
= 1.0 for pure tension.
\(=0.4\) for pure bending.
\(=0.4\left[1-\left(\sigma_{c} /\left(k_{1}\left(h / h^{*}\right) f_{c t, e f f}\right)\right)\right] \leq 1\) for rectangular sections and webs of box sections and T -sections.
\(=0.9 F_{c r} /\left(A_{c t} f_{c t, \text { eff }}\right) \geq 0.5\) for flanges of box sections and T-sections.
\(\sigma_{\mathrm{c}}=\) mean stress of the concrete acting on the part of the section under consideration.
\(=N_{\text {Ed }} / b h\)
\(N_{\text {Ed }}=\) axial force at the serviceability limit state acting on the part of the cross-section under consideration (compressive force positive). \(N_{\text {Ed }}\) should be determined considering the characteristic values of prestress and axial forces under the relevant combination of actions
\(h^{*}=\operatorname{MIN}\{h ; 1.0\}\)
\(k_{1}=\) coefficient considering the effects of axial forces on the stress distribution:
\(=1.5\) if \(N_{\text {Ed }}\) is a compressive force
\(=2 h^{*} / 3 h\) if \(N_{\mathrm{Ed}}\) is a tensile force
\(F_{\mathrm{cr}} \quad=\) absolute value of the tensile force within the flange immediately prior to cracking due to the cracking moment calculated with \(f_{\text {ct,eff }}\)
See also Section 15.2.1 for a simplified method of calculating minimum area of steel.
In flanged cross-sections like T-beams and box girders, the division into parts should be as indicated in Figure 13.2.

a) Components

b) Stresses

Figure 13.2
Example for a division of a flanged cross-section for analysis of cracking
Bonded tendons in the tension zone may be assumed to contribute to crack control within a distance \(\leq 150 \mathrm{~mm}\) from the centre of the tendon. This may be taken into account by including the term \(\xi_{1} A_{p}^{\prime} \Delta_{p}\) in the Expression above to give:
```

$A_{s, \text { min }}=\left(k_{c} k f_{c t, \text { eff }} A_{c t}-\xi_{1} A_{p}^{\prime} \Delta \sigma_{p}\right) / \sigma_{\mathrm{s}}$
where
$A_{p}^{\prime} \quad=$ area of pre- or post-tensioned tendons within $A_{c, \text { eff }}$
$A_{c, \text { eff }}=$ effective area of concrete in tension surrounding the reinforcement or
prestressing tendons of depth, $h_{c, \text { ef }}$
$h_{c, \text { ef }}=\operatorname{MIN}\{2.5(h-d) ;(h-x) / 3 ; h / 2\}$ (see Figure 13.3)
$\xi_{1}=$ adjusted ratio of bond strength taking into account the different diameters of
prestressing and reinforcing steel
$=\left(\xi \phi_{\mathrm{S}} / \phi_{\mathrm{p}}\right)^{0.5}$
$=\xi^{0.5}$ if only prestressing steel is used to control cracking
$\xi=$ ratio of bond strength of prestressing and reinforcing steel, according to
Table 13.4

```
\(\phi_{\mathrm{s}}=\) largest bar diameter of reinforcing steel
\(\phi_{p}=\) equivalent diameter of tendon
\(=1.6 A_{p}^{0.5}\) for bundles
\(=1.75 \phi_{\text {wire }}\) for single 7 wire strands where \(\phi_{\text {wire }}\) is the wire diameter
\(=1.20 \phi_{\text {wire }}\) for single 3 wire strands where \(\phi_{\text {wire }}\) is the wire diameter
\(\Delta \sigma_{\mathrm{p}}=\) stress variation in prestressing tendons from the state of zero strain of the concrete at the same level

Figure 13.3
Effective tension area (typical cases)
In prestressed members no minimum reinforcement is required in sections where, under the characteristic combination of loads and the characteristic value of prestress, the concrete is compressed or the absolute value of the tensile stress in the concrete is below \(f_{c t, e f f}\).

Table 13.4
Ratio of bond strength, \(\xi\), between tendons and reinforcing steel
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Prestressing steel } & \(\boldsymbol{\xi}\) & \multicolumn{2}{|l|}{} \\
\cline { 2 - 4 } & Pre-tensioned & Bonded, post-tensioned \\
\cline { 3 - 4 } & & \(\leq\) C50/60 & \(\geq\) C70/85 \\
\hline Smooth bars and wires & Not applicable & 0.3 & 0.15 \\
\hline Strands & 0.6 & 0.5 & 0.25 \\
\hline Indented wires & 0.7 & 0.6 & 0.30 \\
\hline Ribbed bars & 0.8 & 0.7 & 0.35 \\
\hline \begin{tabular}{l}
Note \\
For intermediate values between C50/60 and C70/85 interpolation may be used.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{13.6 Control of deflection}

The calculation method adopted shall represent the true behaviour of the structure under relevant actions to an accuracy appropriate to the objectives of the calculation.

Members which are not expected to be loaded above the level which would cause the tensile strength of the concrete to be exceeded anywhere within the member should be considered to be uncracked. Members which are expected to crack, but may not be fully cracked, will behave in a manner intermediate between the uncracked and fully cracked conditions and, for members subjected mainly to flexure, an adequate prediction of behaviour is given in the following expression:
\(\alpha=\zeta \alpha_{\|}+(1-\zeta) \alpha_{1}\)
where
\(\alpha=\) deformation parameter considered which may be, for example, a strain, a curvature, or a rotation. (As a simplification, a may also be taken as a deflection - see below)
\(\alpha_{1}, \alpha_{\|}=\)the values of the parameter calculated for the uncracked and fully cracked conditions respectively
\(\zeta=\) distribution coefficient (allowing for tensioning stiffening at a section)
\(=1-\beta\left(\sigma_{\mathrm{sr}} / \sigma_{\mathrm{s}}\right)^{2}\)
\(=0\) for uncracked sections
\(\beta \quad=\) coefficient taking account of the influence of the duration of the loading or of repeated loading on the average strain
\(=1.0\) for a single short-term loading
\(=0.5\) for sustained loads or many cycles of repeated loading
\(\sigma_{\mathrm{s}}=\) stress in the tension reinforcement calculated on the basis of a cracked section
\(\sigma_{\mathrm{sr}}=\) stress in the tension reinforcement calculated on the basis of a cracked section under the loading conditions causing first cracking

Note: \(\sigma_{\mathrm{sr}} / \sigma_{\mathrm{s}}\) may be replaced by \(M_{\mathrm{cr}} / M\) for flexure or \(N_{\mathrm{cr}} / N\) for pure tension, where \(M_{\mathrm{cr}}\) is the cracking moment and \(N_{\text {cr }}\) is the cracking force.

Deformations due to loading may be assessed using the tensile strength and the effective modulus of elasticity of the concrete.

Table 3.1 indicates the range of likely values for tensile strength. In general, the best estimate of the behaviour will be obtained if \(f_{\text {ctm }}\) is used. Where it can be shown that there are no axial tensile stresses (e.g. those caused by shrinkage or thermal effects) the flexural tensile strength, \(f_{\text {ctm,fl, }}\) may be used.
\(f_{\mathrm{ctm}, \mathrm{fl}}=\operatorname{MAX}\left\{(1.6-h / 1000) f_{\mathrm{ctm}} ; f_{\mathrm{ctm}}\right\}\)
where
\(h=\) total member depth in mm
\(f_{\text {ctm }}=\) mean axial tensile strength from Table 3.1
For loads with a duration causing creep, the total deformation including creep may be calculated by using an effective modulus of elasticity for concrete according to the following Expression

BS EN 1992-1-1 7.4.3(2)
\(E_{c, \text { eff }}=E_{\mathrm{cm}} /\left(1+\varphi\left(\infty, t_{0}\right)\right)\)
where
\(\varphi\left(\infty, t_{0}\right)=\) creep coefficient relevant for the load and time interval (see Section 3.1.2)
Shrinkage curvatures may be assessed from the following:
\(1 / r_{\mathrm{CS}}=\varepsilon_{\mathrm{as}} \alpha_{\mathrm{e}} S / /\)
where
\(1 / r_{\text {cS }}=\) curvature due to shrinkage
\(\varepsilon_{\mathrm{cs}}=\) free shrinkage strain (see Section 3.1.3)
\(S\) = first moment of area of the reinforcement about the centroid of the section
। = second moment of area of the section
\(\alpha_{\mathrm{e}}=\) effective modular ratio
\(=E_{\mathrm{s}} / E_{\mathrm{c}, \mathrm{eff}}\)
\(S\) and I should be calculated for the uncracked condition and the fully cracked condition, the final curvature being assessed using the Expression for \(\alpha\) above.

BS EN 1992-1-1 7.4.3(7)

The most rigorous method of assessing deflections using the method given above is to compute the curvatures at frequent sections along the member and then calculate the deflection by numerical integration. In most cases it will be acceptable to compute the deflection twice, assuming the whole member to be in the uncracked and fully cracked condition in turn, and then interpolate using the Expression for \(\alpha\) above.

\section*{14 Detailing - general requirements}

\subsection*{14.1 General}

The rules given in this section apply to ribbed reinforcement, welded mesh and prestressing tendons used in structures subject predominantly to static loading.

Unless otherwise stated, the rules for individual bars also apply for bundles of bars for which an equivalent diameter \(\phi_{\mathrm{n}}=\phi\left(n_{\mathrm{b}}\right)^{0.5}\) should be used in the calculations. In this Expression, \(n_{\mathrm{b}}\) is the number of bars in the bundle. A value for \(n_{b}\) should be limited to four vertical bars in compression and in lapped joints, and to three in all other cases. The value of \(\phi_{\mathrm{n}}\) should be less than or equal to 55 mm .

The clear distance between (and the cover to) bundled bars should be measured from the actual external contour of the bundled bars. Bars are allowed to touch one another at laps and they need not be treated as bundled bars under these conditions.

\subsection*{14.2 Spacing of bars}

The spacing of bars should be such that concrete can be placed and compacted satisfactorily for the development of bond.

The clear distance between individual parallel bars or between horizontal layers of parallel bars should not be less than the bar diameter, the aggregate size +5 mm , or 20 mm , whichever is the greatest.

Where bars are positioned in separate horizontal layers, the bars in each layer should be located vertically above each other. There should be sufficient space between the resulting columns of bars to allow access for vibrators to give good compaction of the concrete.

\subsection*{14.3 Mandrel sizes for bent bars}

The diameter to which a bar is bent should be such as to avoid damage to the reinforcement and crushing of concrete inside the bend of the bar. To avoid damage to reinforcement the mandrel size is as follows:
\(4 \phi\), for bar diameter \(\phi \leq 16 \mathrm{~mm}\)
\(7 \phi\), for bar diameter \(\phi>16 \mathrm{~mm}\)
\(20 \phi\), for mesh bent after welding where transverse bar is on or within \(4 \phi\) of the bend.
Otherwise \(4 \phi\), or \(7 \phi\), as above. Welding must comply with ISO/FDIS 17660-2 \({ }^{[22]}\).
The mandrel diameter \(\phi_{\mathrm{m}}\) to avoid crushing of concrete inside the bend need not be checked if: - Anchorage of the bar does not require a length more than \(5 \phi\) past the end of the bend; and
- The bar is not positioned at an edge and there is a cross bar (of diameter \(\geq \phi\)) inside the bend, and
- Diameters noted above are used.

Otherwise the following minimum mandrel diameter \(\phi_{m, \text { min }}\) should be used:
\[
\phi_{\mathrm{m}, \text { min }} \geq F_{\mathrm{bt}}\left(\left(1 / a_{\mathrm{b}}\right)+1 /(2 \phi)\right) / f_{\mathrm{cd}}
\]
where
\(F_{\mathrm{bt}}=\) tensile force in the bar at the start of the bend caused by ultimate loads
\(a_{\mathrm{b}}=\) half the centre to centre spacing of bars (perpendicular to the plane of the bend). For bars adjacent to the face of the member, \(a_{b}=\) cover \(+0.5 \phi\)
\(f_{c d}=0.85 f_{c k} / 1.5\)
The value of \(f_{c d}\) should not be taken greater than that for concrete class C55/67 where
\(f_{c k}=\) characteristic cylinder strength

BS EN 1992-1-1 8.1(1)

BS EN 1992-1-1 8.9.1(1) \& (2)

BS EN 1992-1-1 8.9.1(3) \& (4)

\section*{BS EN 1992-1-1}

BS EN 1992-1-1 table 8.1N \& NA

BS EN 1992-1-1 8.3(3)
```

BS EN 1992-1-1

```

BS EN 1992-1-1
3.1.6(1) \& NA to BS EN 1992-2

\subsection*{14.4 Anchorage of bars}

\subsection*{14.4.1 General}

BS EN 1992-1-1 8.4(1) \& (2)

All reinforcement should be so anchored that the forces in them are safely transmitted to the surrounding concrete by bond without causing cracks or spalling. The common methods of anchorage of longitudinal bars and links are shown in Figures 14.1 and 14.2.

a) Basic anchorage length \(l_{\mathrm{b}, \mathrm{rqd}}\), for any shape measured along the centreline

b) Equivalent anchorage length for standard bend \(90^{\circ} \quad \alpha<150^{\circ}\)
where \(l_{\mathrm{b}, \mathrm{eq}}=\alpha_{1} l_{\mathrm{b}, \mathrm{rqd}}\)

d) Equivalent anchorage length for standard loop where \(l_{\mathrm{b}, \mathrm{eq}}=\alpha_{1} l_{\mathrm{b}, \mathrm{rqd}}\)

Figure 14.1
Methods of anchorage other than by a straight bar

Figure 14.2
Anchorage of links

\subsection*{14.4.2 Design anchorage length \(l_{\text {bd }}\)}

The design anchorage length \(l_{b d}\) is
\(l_{\text {bd }}=\left(\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}\right) l_{\text {b, rqd }} \geq l_{\text {b, min }}\)
where
\(\alpha_{1}=\) factor dealing with the form of bar assuming adequate cover
\(=0.7\) for bent bars in tension where \(c_{d}>3 \phi\), where \(c_{d}\) is defined in Figure 14.3
\(=1.0\) otherwise for bars in tension
\(=1.0\) for bars in compression
\(\alpha_{2}=\) factor dealing with effect of concrete minimum cover
\(=1-0.15\left(c_{d}-\phi\right) / \phi \geq 0.7\) for straight bars in tension but \(\leq 1.0\)
\(=1-0.15\left(c_{d}-3 \phi\right) / \phi \geq 0.7\) for bent bars in tension but \(\leq 1.0\)
\(=1.0\) otherwise for bars in tension
\(=1.0\) for bars in compression
\(\alpha_{3}=\) factor dealing with effect of confinement by transverse reinforcement
\(=1.0\) generally
\(\alpha_{4}=\) factor dealing with the effect of influence of welded transverse bars
\(=0.7\) for a welded transverse bar conforming with Figure 14.1e)
\(=1.0\) otherwise
\(\alpha_{5}=\) factor dealing with the effect of pressure transverse to the plane of splitting along the design anchorage length
\(=1.0\) generally
\(l_{\mathrm{b}, \mathrm{rad}}=\) basic anchorage length (see Section 14.4.3)
\(l_{\mathrm{b}, \text { min }}=\) the minimum anchorage length
\(\geq \operatorname{MAX}\left\{0.3 l_{\mathrm{b}, \text { rqd }} ; 10 \phi ; 100 \mathrm{~mm}\right\}\) in tension bars; and
\(\geq \operatorname{MAX}\left\{0.6 l_{\mathrm{b}, \text { rqd }} ; 10 \phi ; 100 \mathrm{~mm}\right\}\) in compression bars.
The product \(\left(\alpha_{2} \alpha_{3} \alpha_{5}\right) \geq 0.7\)

Figure 14.3
Values of \(c_{d}\) for beams and slabs

BS EN 1992-1-1 fig. 8.3
14.4.3 Basic anchorage length \(l_{\text {b,rqd }}\)
\(l_{\text {b,rqd }}=\) basic anchorage length required \(=(\phi / 4)\left(\sigma_{\text {sd }} / f_{\text {bd }}\right)\)
where
\(\phi=\) diameter of the bar
\(\sigma_{\mathrm{sd}}=\) design stress in the bar at the position from where the anchorage is measured
\(f_{b d}=\) ultimate bond stress (see Section 14.5)
The anchorage length should be measured along the centre line of the bar in bent bars.

\subsection*{14.4.4 Equivalent anchorage length \(l_{\mathrm{b}, \mathrm{eq}}\)}

BS EN 1992-1-1
8.4.4(2)

As a simplification
- For the shapes shown in Figure 14.1b) to d) an equivalent anchorage length \(l_{b, e q}\) may be used where \(l_{\mathrm{b}, \mathrm{eq}}=\alpha_{1} l_{\mathrm{b}, \mathrm{rqd}}\).
For the arrangement shown in Figure 14.1e) \(l_{\mathrm{b}, \mathrm{eq}}=\alpha_{4} l_{\mathrm{b}, \text { req }}\).

\subsection*{14.5 Ultimate bond stress}

The ultimate bond stress, \(f_{\text {bd }}\), for ribbed bars may be taken as (see also Table 14.1)
\(f_{\text {bd }}=2.25 \eta_{1} \eta_{2} f_{\text {ctd }}\)
where
\(\eta_{1}=\) coefficient related to the quality of the bond condition and the position of the bar during concreting
\(=1.0\) for 'good' bond conditions (see Figure 14.4 for definition)
\(=0.7\) for all other cases and for bars in structural elements built using slipforms
\(\eta_{2}=\) coefficient related to bar diameter
\(=1.0\) for bar diameter \(\leq 32 \mathrm{~mm}\)
\(=(132-\phi) / 100\) for bar diameter \(>32 \mathrm{~mm}\)
\(f_{c t d}=\left(\alpha_{c t} f_{c t k, 0.05} / \gamma_{C}\right)\) is the design value of tensile strength using the value of \(f_{c t k, 0.05}\) obtained from Table 3.1, \(\alpha_{c t}=1.0\) and \(\gamma_{\mathrm{C}}=1.5\). Due to the brittleness of higher strength concrete \(f_{\text {ctk }, 0.05}\) should be limited here to the value for \(\mathrm{C} 60 / 75\), unless it can be verified that the average bond strength increases above this limit

Figure 14.4
Description of bond conditions

\section*{Table 14.1}

Design bond stress for different bond conditions
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & \multicolumn{9}{|c|}{ Design bond stress \(\boldsymbol{f}_{\text {bd }}\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)\)} \\
\cline { 2 - 10 } & C25/30 & C30/37 & C35/45 & C40/50 & C45/55 & C50/60 & C55/67 & C60/75 \\
\hline \begin{tabular}{l}
Good bond \& \\
\(\phi \leq \mathbf{3 2 ~ m m ~}\)
\end{tabular} & 2.7 & 3.0 & 3.3 & 3.8 & 4.1 & 4.4 & 4.5 & 4.7 \\
\hline \begin{tabular}{l}
Good bond \& \\
\(\phi=\mathbf{4 0} \mathbf{~ m m ~}\)
\end{tabular} & 2.5 & 2.8 & 3.0 & 3.5 & 3.7 & 4.0 & 4.1 & 4.3 \\
\hline \begin{tabular}{l}
Poor bond \& \\
\(\phi \leq \mathbf{3 2 ~ m m ~}\)
\end{tabular} & 1.9 & 2.1 & 2.3 & 2.6 & 2.8 & 3.0 & 3.2 & 3.3 \\
\hline \begin{tabular}{l}
Poor bond \& \\
\(\phi=\mathbf{4 0} \mathbf{~ m m}\)
\end{tabular} & 1.7 & 1.9 & 2.1 & 2.4 & 2.6 & 2.8 & 2.9 & 3.0 \\
\hline
\end{tabular}

\subsection*{14.6 Anchorage of tendons at ULS}

The anchorage of tendons should be checked in sections where the concrete tensile stress exceeds \(f_{\text {ctk, } 0.05}\) (\(f_{\text {ctk, } 0.05}\) should not exceed the value for class C60/75 concrete). The total anchorage length for a tendon with a stress \(\sigma_{p d}\) is:
\(l_{\text {bpd }}=l_{\text {pt2 }}+\left(\alpha_{2} \phi\left(\sigma_{\text {pd }}-\sigma_{\text {pm }}{ }^{\prime \infty}\right) / f_{\text {bpd }}\right)\)

\section*{BS EN 1992-1-1 \\ 8.10.2.3}

BS EN 1992-1-1
Exp. (8.21)
where
\(l_{\mathrm{pt} 2}=1.2\left(\alpha_{1} \alpha_{2} \phi \sigma_{\mathrm{pm}, 0} / f_{\mathrm{bpt}}\right)\)
where
\(\boldsymbol{\alpha}_{1} \quad=1.0\) for gradual release of prestress and 1.25 for sudden release
\(\sigma_{\mathrm{pm}, 0}=\) stress in the tendon just after release
\(f_{\text {bpt }}=\eta_{\text {p1 }} \eta_{1} f_{\text {ctd }}(t)\)
\(\eta_{\mathrm{p} 1}=2.7\) for indented wires and 3.2 for 3 - and 7 -wire strands
\(\eta_{1}=1.0\) for good bond conditions and 0.7 otherwise
\(f_{\text {ctd }}(t)=\) design tensile value of strength at the time of release
\(=1.00 .7 \mathrm{fctm}(t) / 1.5\)
\(f_{c t m}(t)=\left(\beta_{c c}(t)\right)^{\alpha} f_{\text {ctm }}\)
\(\beta_{c c}(t)=\) coefficient which depends on the age of loading
\(=\exp \left\{s\left[1-\left(\frac{28}{t}\right)^{0.5}\right]\right\}\)
\(s \quad=\) coefficient which depends on type of cement (see Section 3.1.2)
\(=0.20\) for cement strength classes CEM 42.5R, CEM 52.5N and CEM 52.5R (Class R)
\(=0.25\) for cement strength classes CEM 32.5R, CEM 42.5N (Class N)
\(=0.38\) for cement strength class CEM 32.5 (Class S)
\(t=\) age of concrete in days
\(f_{\mathrm{ctm}}=\) mean value of axial tensile strength of concrete (see Table 3.1)
\(\alpha=1\) for \(t<28\)
\(=2 / 3\) for \(t \geq 28\)
\(\alpha_{2}=0.25\) for circular tendons and 0.19 for 3- and 7-wire strands
\(\phi \quad=\) nominal diameter of the tendon
\(\sigma_{\mathrm{pd}}=\) tendon stress corresponding to the force calculated for a cracked section
\(\sigma_{\mathrm{pm}, \infty}=\) prestress after all losses
\(f_{\mathrm{bpd}}=\eta_{\mathrm{p} 2} \eta_{1} f_{\text {ctd }}\), where \(\eta_{\mathrm{p} 2}=1.4\) for indented wires and 1.2 for 7 -wire strands. \(\boldsymbol{\eta}_{1}\) is described in Section 14.5

BS EN 1992-1-1
8.10.2.2(2)

BS EN 1992-1-1
Exp. (8.16)

BS EN 1992-1-1
8.7

\subsection*{14.7 Anchorage of tendons at transfer of prestress}

The basic value of the transmission length at the release of tendons, \(l_{\mathrm{pt}^{\prime}}\), is given by:
\(l_{\mathrm{pt}}=\alpha_{1} \alpha_{2} \phi \sigma_{\mathrm{pm}, 0} / f_{\mathrm{bpt}}\)
where
\(\alpha_{1}=1.0\) for gradual release
\(=1.25\) for sudden release
\(\alpha_{2}=0.25\) for tendons with circular cross-section
\(=0.19\) for 3 - and 7 -wire strands
\(\phi \quad=\) nominal diameter of tendon
\(\sigma_{\mathrm{pm}, 0}=\) tendon stress just after release
\(f_{\mathrm{bpt}}^{\mathrm{p}, 0}=\) bond stress
\(=\eta_{\mathrm{p} 1} \eta_{1} f_{\text {ctd }}(t)\)
where
\(\eta_{\mathrm{p} 1}=\) coefficient that takes into account the type of tendon and the bond situation at release
\(=2.7\) for indented wires
\(=3.2\) for 3 - and 7 -wire strands
\(\eta_{1}=1.0\) for good bond conditions
\(=0.7\) otherwise, unless a higher value can be justified with regard to special circumstances in execution
\(f_{\text {ctd }}(t)=\) design tensile value of strength at time of release (see Section 14.6)
The design value of the transmission length should be taken as the less favourable of two values, depending on the design situation:
\(l_{\mathrm{pt} 1}=0.8 l_{\mathrm{pt}}\)
or
\(l_{\mathrm{pt} 2}=1.2 l_{\mathrm{pt}}\)
Normally the lower value is used for verifications of local stresses at release, the higher value for ultimate limit states (shear, anchorage etc.).

\subsection*{14.8 Laps}

\subsection*{14.8.1 General}

Forces are transmitted from one bar to another by lapping, welding or using mechanical devices.

Laps between bars should normally be staggered and not located in areas of high moments/ forces. All bars in compression and secondary reinforcement may be lapped at one place.

\subsection*{14.8.2 Lapping bars}

BS EN 1992-1-1 8.7.2(2) \& 8.7.3

BS EN 1992-1-1
Exp. (8.10)

Laps of bars should be arranged as shown in Figure 14.5.
The design lap length \(I_{0}\) is:
\(l_{0}=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5} \alpha_{6} l_{\mathrm{b}, \mathrm{rqd}} \geq l_{0, \text { min }}\)
where
\(\alpha_{6}=\left(\rho_{1} / 25\right)^{0.5} .1<\alpha_{6}<1.5\) (see Table 14.2)
\(\rho_{1}=\) percentage of reinforcement lapped within \(0.65 l_{0}\) from the centre line of the lap being considered
\(l_{0, \min } \geq \operatorname{MAX}\left\{0.3 \alpha_{6} l_{\mathrm{b}, \mathrm{rqd}} ; 15 \varphi ; 200 \mathrm{~mm}\right\}\)
\(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\) and \(\alpha_{5}\) are described in Section 14.4.2
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\rho_{1}, \%\) lapped bars relative to total cross-sectional area & < 25\% & 33\% & 50\% & > 50\% \\
\hline Values of coefficient \(\alpha_{6}\) & \(\alpha_{6}\) & 1.0 & 1.15 & 1.4 & 1.5 \\
\hline
\end{tabular}

Figure 14.5
Arranging adjacent lapping bars

\subsection*{14.8.3 Lapping fabric}

Laps of fabric should be arranged as shown in Figure 14.6.
BS EN 1992-1-1 8.7.5

When fabric reinforcement is lapped by layering, the following should be noted:
- Calculated stress in the lapped reinforcement should not be more than \(80 \%\) of the design strength; if not, the moment of resistance should be based on the effective depth to the layer furthest from the tension face and the calculated steel stress should be increased by \(25 \%\) for the purposes of crack control.
- Permissible percentage of fabric main reinforcement that may be lapped in any section is: \(100 \%\) if \(\left(A_{s} / s\right) \leq 1200 \mathrm{~mm}^{2} / \mathrm{m}\) (where \(s\) is the spacing of bars) \(60 \%\) if \(A_{s} / s>1200 \mathrm{~mm}^{2} / \mathrm{m}\).
All secondary reinforcement may be lapped at the same location and the minimum lap length \(I_{0, \min }\) for layered fabric is as follows:
\(\geq 150 \mathrm{~mm}\) for \(\phi \leq 6 \mathrm{~mm}\)
\(\geq 250 \mathrm{~mm}\) for \(6 \mathrm{~mm}<\phi<8.5 \mathrm{~mm}\)
\(\geq 350 \mathrm{~mm}\) for \(8.5 \mathrm{~mm}<\phi<12 \mathrm{~mm}\)
There should generally be at least two bar pitches within the lap length. This could be reduced to one bar pitch for \(\phi \leq 6 \mathrm{~mm}\).

BS EN 1992-1-1 8.7.5.1(7) 8.7.5.2(1)

Figure 14.6
Lapping of welded fabric
a) Intermeshed fabric (longitudinal section)
b) Layered fabric (longitudinal section)

BS EN 1992-1-1 fig. 8.10

BS EN 1992-1-1 fig. 8.7

BS EN 1992-1-1 8.8

\subsection*{14.8.4 Transverse reinforcement}

Transverse reinforcement is required in the lap zone to resist transverse tension forces.
Where the diameter of the lapped bar is less than 20 mm or the percentage of reinforcement lapped at any section is less than \(25 \%\), then any transverse reinforcement or links necessary for other purposes may be deemed sufficient for the transverse tensile forces without further justification.

When the above conditions do not apply, transverse reinforcement should be provided as shown in Figure 14.7. Where more than \(50 \%\) of bars are lapped at one section and the spacing between adjacent laps (dimension a in Figure 14.5) < 10 \(\phi\), the transverse reinforcement should be in the form of links or \(U\) bars anchored into the body of the section.

In Figure 14.7, the total area of transverse reinforcement at laps \(\Sigma A_{s t}>A_{s}\) of one lapped bar.

Figure 14.7 Transverse reinforcement for lapped splices

a) Bars in tension

b) Bars in compression

\subsection*{14.8.5 Lapping large bars}

For bars larger than 40 mm in diameter the following additional requirements apply:
- Bars should be anchored using mechanical devices. As an alternative they may be anchored as straight bars, but links should be provided as confining reinforcement.
- Bars should not be lapped except in sections with a minimum dimension of 1 m or where the stress is not greater than \(80 \%\) of the ultimate strength.

In the absence of transverse compression, transverse reinforcement, in addition to that required for other purposes, should be provided in the anchorage zone at spacing not exceeding 5 times the diameter of the longitudinal bar. The arrangement should comply with Figure 14.8.

Figure 14.8 Additional reinforcement in an anchorage for large diameter bars where there is no transverse compression

\title{
15 Detailing - particular requirements
}

\subsection*{15.1 General}

BS EN 1992-1-1 9.1

This section gives particular requirements for detailing of structural elements. These are in addition to those outlined in Sections 13 and 14.

\subsection*{15.2 Beams}

BS EN 1992-1-1
9.2.1.1

BS EN 1992-1-1 9.2.1.2(3)

\subsection*{15.2.1 Longitudinal bars}

The area of longitudinal reinforcement shall not be taken as less than \(A_{s, \text { min }}\)
\(A_{\mathrm{s}, \min }=0.26\left(f_{\mathrm{ctm}} / f_{\mathrm{yk}}\right) b_{\mathrm{t}} d \geq 0.0013 b_{\mathrm{t}} d\)
where
\(f_{\mathrm{ctm}}=\) mean axial tensile strength of concrete (see Table 3.1)
\(f_{\mathrm{yk}}=\) characteristic yield strength of reinforcement
\(b_{t}=\) mean width of the tension zone; for a \(T\)-beam with the flange in compression, only the width of the web is taken into account in calculating the value \(b_{\mathrm{t}}\)
d = effective depth
Values of \(A_{s, \text { min }}\) for various strength classes are provided in Table 15.1
The cross-sectional area of tension or compression reinforcement is \(0.04 A_{c}\) outside lap locations.
Any compression longitudinal reinforcement which is included in the resistance calculation should be held by transverse reinforcement with spacing not greater than 15 times the diameter of the longitudinal bar.

Where the design of a section has included the contribution of any longitudinal compression reinforcement in the resistance calculation, such longitudinal compression reinforcement should be effectively restrained by transverse reinforcement. Effective restraint may be achieved by satisfying all of the following conditions.
- Links should be so arranged that every corner and alternate bar or group in an outer layer of compression reinforcement is held in place by a link anchored in accordance with Figure 14.2 a) or b).
- All other compression reinforcement should be within 150 mm of a bar held in place by a link.
- The minimum size of the transverse reinforcement and links, where necessary, should be not less than 6 mm or one quarter of the diameter of the longitudinal bars, whichever is greater.

Table 15.1
Minimum area of longitudinal reinforcement as a proportion of \(b_{t} d\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
Strength \\
class
\end{tabular} & C25/30 & C28/35 & C30/37 & C32/40 & C35/45 & C40/50 & C45/55 & C50/60 & C55/67 & C60/75 & C70/85 \\
\hline \begin{tabular}{l}
\(\boldsymbol{A}_{\text {s, } \mathbf{m i n}}\) \\
as \(\mathbf{a}\) \% of \\
\(\boldsymbol{b}_{\mathbf{t}}^{\boldsymbol{d}}\)
\end{tabular} & 0.13 & 0.14 & 0.15 & 0.16 & 0.17 & 0.18 & 0.20 & 0.21 & 0.22 & 0.23 & 0.24 \\
\hline
\end{tabular}

For members prestressed with permanently unbonded tendons or with external prestressing cables, it should be verified that the ultimate bending capacity is larger than the flexural cracking moment. A capacity of 1.15 times the cracking moment is sufficient.

\subsection*{15.2.2 Curtailment}

Sufficient reinforcement should be provided at all sections to resist the envelope of the acting
tensile force. The resistance of bars within their anchorage lengths may be taken into account assuming linear variation of force.

BS EN 1992-1-1

The longitudinal tensile forces in the bars include those arising from bending moments and those from the truss model for shear. As may be seen from Figure 15.1, those forces from the truss model for shear may be accommodated by displacing the location where a bar is no longer required for bending moment by a distance of \(a_{l}\) where
\(a_{1}=z(\cot \theta-\cot \alpha) / 2\)
where
\(\theta=\) strut angle used for shear calculations (see Figure 7.3)
\(\alpha=\) angle of the shear reinforcement to the longitudinal axis (see Figure 7.3)
For all but high shear \(\cot \theta=2.5\); for vertical links cot \(\alpha=0\); so generally \(a_{l}=1.25\) z.

Figure 15.1
Illustration of the curtailment of longitudinal reinforcement, taking into account the effect of inclined cracks and the resistance of reinforcement within anchorage lengths

\subsection*{15.2.3 Top reinforcement in end supports}

In monolithic construction, (even when simple supports have been assumed in design) the section at supports should be designed for bending moment arising from partial fixity of at least \(25 \%\) of the maximum bending design moment in span.

BS EN 1992-1-1 fig. 9.2

\subsection*{15.2.4 Bottom reinforcement in end supports}

The area of bottom reinforcement provided at ends with little or no fixity assumed in the design should be at least \(25 \%\) of the area of the steel provided in the span. The bars should be anchored to resist a force, \(F_{\text {Ed }}\) of
\(F_{\mathrm{Ed}}=\left(\left|V_{\mathrm{Ed}}\right| a_{l} / z\right)+N_{\mathrm{Ed}}\)
where
\(\left|V_{\text {Ed }}\right|=\) absolute design value of shear force
\(N_{\text {Ed }}=\) axial force,
\(a_{1}\), is as defined in Section 15.2.2
The anchorage is measured from the line of contact between the beam and the support.

\subsection*{15.2.5 Intermediate supports}

BS EN 1992-1-1 9.2.1.2(2)

BS EN 1992-1-1 fig. 9.1

At intermediate supports of continuous beams, the total area of tension reinforcement, \(A_{s^{\prime}}\) of a flanged cross-section should be spread over the effective width of the flange (as defined in Figure 15.2). Part of it may be concentrated over the web width.

Figure 15.2
Placing of tension reinforcement in flanged cross-section

\subsection*{15.2.6 Shear reinforcement}

Where a combination of links and bent up bars is used as shear reinforcement, at least \(50 \%\) of the reinforcement required should be in the form of links. The longitudinal spacing of shear assemblies should not exceed \(0.75 d(1+\cot \alpha)\), and spacing of bent-up bars should not exceed \(0.6 d(1+\cot \alpha)\) where \(\alpha\) is the inclination of the shear reinforcement to the longitudinal axis of the beam. The transverse spacing of the legs of shear links should not exceed \(0.75 \mathrm{~d} \leq 600 \mathrm{~mm}\).

A minimum area of shear reinforcement should be provided to satisfy the following Expression:
\(A_{\text {sw }} /\left(s b_{\mathrm{w}} \sin \alpha\right) \geq 0.08 f_{\mathrm{ck}}^{0.5} / f_{\mathrm{yk}}\)
where
\(s=\) longitudinal spacing of the shear reinforcement
\(b_{w}=\) breadth of the web member
\(\alpha=\) angle of the shear reinforcement to the longitudinal axis of the member. For vertical links \(\sin \alpha=1.0\).

\subsection*{15.2.7 Torsion reinforcement}

Where links are required for torsion, they should comply with the anchorage shown in Figure 15.3. The maximum longitudinal spacing of the torsion links \(s_{l, \text { max }}\) should be:
```

s}\mp@subsup{l}{,\mathrm{ max }}{}\leq\operatorname{MIN{u/8; 0.75d (1 + cot \alpha); h; b}

```
where
```

where
u = circumference of outer edge of effective cross-section (see Figure 9.1)
u = circumference of outer edge of effective cross-section (see Figure 9.1)
d = effective depth of beam
d = effective depth of beam
h = height of beam
h = height of beam
b = breadth of beam

```
```

    b = breadth of beam
    ```
```

The longitudinal bars required for torsion should be arranged such that there is at least one bar at each corner with the others being distributed uniformly around the inner periphery of the links at a spacing not exceeding 350 mm .

```
BS EN 1992-1-1 9.2.3
```


a1)

a2)

a3)
a) Recommended shapes

## Note

The second alternative for a2) should have a full lap length along the top

Figure 15.3
Examples of shapes for torsion links

### 15.2.8 Indirect supports

Where a beam is supported by a beam, instead of a wall or column, reinforcement should be provided to resist the mutual reaction. This reinforcement is in addition to that required for other reasons. The supporting reinforcement between two beams should consist of links surrounding the principal reinforcement of the supporting member. Some of these links may be distributed outside the volume of concrete common to the two beams. See Figure 15.4.


BS EN 1992-1-1 9.3

BS EN 1992-1-1
9.3.1.1(1)

BS EN 1992-1-1
9.3.1.1(3) \& NA

BS EN 1992-1-1
9.3.1.1(3) \& NA

BS EN 1992-1-1
9.3.1.2

### 15.3 One-way and two-way spanning slabs

### 15.3.1 Main (principal) reinforcement

The minimum and maximum steel percentages in the main direction in Section 15.2.1 apply.
The spacing of main reinforcement should not exceed $3 h$ (but not greater than 400 mm ), where $h$ is the total depth of the slab. In areas with concentrated loads or areas of maximum moment these provisions become respectively $2 h$ and $\leq 250 \mathrm{~mm}$.

### 15.3.2 Secondary (distribution) reinforcement

Secondary reinforcement of not less than $20 \%$ of the principal reinforcement should be provided in one-way slabs.

The spacing of secondary reinforcement should not exceed 3.5h (but not greater than 450 mm ). In areas with concentrated loads, or in areas of maximum moment, these provisions become respectively 3 h (but not greater than 400 mm ).

### 15.3.3 Reinforcement in slabs near supports

In simply supported slabs, half the calculated span reinforcement should continue up to the support and be anchored therein in accordance with Section 14.4.2.

Where partial fixity occurs along an edge of a slab but is not taken into account in the analysis, the top reinforcement should be capable of resisting at least $25 \%$ of the maximum moment in the adjacent span. This reinforcement should extend at least 0.2 times the length of the adjacent span measured from the face of the support. At an end support the moment to be resisted may be reduced to $15 \%$ of the maximum moment in the adjacent span.

### 15.3.4 Shear reinforcement

A slab in which shear reinforcement is provided should have a depth of at least 200 mm .
Where shear reinforcement is provided the rules for beams may be followed.

### 15.4 Flat slabs

### 15.4.1 Details at internal columns

At internal columns, unless rigorous serviceability calculations are carried out, top reinforcement with an area of $0.5 A_{t}$ should be placed over the column in a width equal to the sum of 0.125 times the panel width on either side of the column. $A_{t}$ represents the area of reinforcement required to resist full negative moment from the sum of the two half panels on each side of the column. Bottom bars ( $\geq 2$ bars) in each orthogonal direction should be provided at internal columns and this reinforcement should pass through the column.

### 15.4.2 Details at edge and corner columns

Reinforcement perpendicular to a free edge required to transmit bending moments from the slab to an edge or corner column should be placed within the effective width $b_{\mathrm{e}}$ shown in Figure 15.5.


Figure 15.5
Effective width, $b_{\mathrm{e}}$, of a flat slab

### 15.4.3 Punching shear reinforcement

Where punching shear reinforcement is required, it should be placed between the loaded area/column and $1.5 d$ inside the control perimeter at which reinforcement is no longer required.

The spacing of link legs around a perimeter should not exceed $1.5 d$ within the first control perimeter ( $2 d$ from the loaded area) and should not exceed $2 d$ for perimeters outside the first control perimeter (see Figure 15.6).


BS EN 1992-1-1 9.4.3

Figure 15.6
Layout of flat slab shear reinforcement


Figure 15.7
Section A - A from Figure 15.6: spacing of punching shear reinforcing links

The intention is to provide an even distribution/density of punching shear reinforcement within the zone where it is required (see Section 8.8).

The control perimeter at which shear reinforcement is not required, $U_{\text {out }}$, should be calculated from the following Expression:
$U_{\text {out }}=\beta V_{E d} /\left(V_{\text {Rd, }, ~} d\right)$
The outermost perimeter of shear reinforcement should be placed not greater than 1.5 d within $U_{\text {out }}$ :
Where shear reinforcement is required, the area of a link leg, $A_{\text {sw,min }}$ is given by the following Expression:
$A_{\text {sw,min }}(1.5 \sin \alpha+\cos \alpha) /\left(s_{r} s_{t}\right) \geq 0.08 f_{c k}^{0.5} / f_{y k}$
where
$s_{r}$ and $s_{t}=$ spacing of shear reinforcement in radial and tangential directions respectively (see Figure 15.6)

### 15.5 Columns

### 15.5.1 Longitudinal reinforcement

Longitudinal bars should have a diameter of not less than 12 mm .
The total amount of longitudinal reinforcement should not be less than $A_{s, \text { min }}$ :
$A_{s, \min } \geq \operatorname{MAX}\left\{0.1 N_{\text {Ed }} / f_{y d} ; 0.002 A_{c}\right\}$
where
$N_{\text {Ed }}=$ design axial compression force
$f_{\text {yd }}=$ design yield strength of the reinforcement
$A_{c}=$ cross-sectional area of concrete

The area of longitudinal reinforcement should not exceed $0.04 A_{c}$ outside lap locations. This limit should be increased to $0.08 \mathrm{~A}_{\mathrm{c}}$ at laps.

### 15.5.2 Transverse reinforcement (links)

The diameter of the transverse reinforcement (links, loops or helical spiral reinforcement) should not be less than 6 mm or one quarter of the diameter of the longitudinal bars, whichever is greater.

The spacing of the transverse reinforcement along the column should not exceed:

```
- 20 times the diameter of the longitudinal bar, or
- the lesser dimension of the column, or
- 400 mm .
```

The maximum spacing required above should be reduced by a factor of 0.6 :

- In sections within a distance equal to the larger dimension of the column cross-section above and below a beam or slab.
- Near lapped joints, if the maximum diameter of the longitudinal bars is greater than 14 mm . A minimum of 3 bars evenly placed in the lap length is required.

Where the direction of the longitudinal bars changes, the spacing of transverse reinforcement should be calculated taking into account the transverse forces involved. These effects may be ignored if the change of direction is less than or equal to 1 in 12.

> Where the design of a section has included the contribution of any longitudinal compression reinforcement in the resistance calculation, such longitudinal compression reinforcement should be effectively restrained by transverse reinforcement. Effective restraint may be achieved by satisfying all of the following conditions:
> Links should be so arranged that every corner and alternate bar or group in an outer layer of compression reinforcement is held in place by a link anchored in accordance with Figure 14.2 a) or b).

- All other compression reinforcement should be within 150 mm of a bar held in place by a link.
- The minimum size of the transverse reinforcement and links, where necessary, should be not less than 6 mm or one quarter of the diameter of the longitudinal bars, whichever is greater.

For circular columns, where the longitudinal reinforcement is located round the periphery adequate lateral support is provided by a circular tie passing round the bars or groups.

### 15.6 Walls

### 15.6.1 Vertical reinforcement

The area of vertical reinforcement should lie between $0.002 A_{c}$ and $0.04 A_{c}$ outside laps

The distance between two adjacent bars should not exceed 3 times the wall thickness or 400 mm , whichever is the lesser.

### 15.6.2 Horizontal reinforcement

Horizontal reinforcement running parallel to the faces of the wall should be provided at each surface. It should not be less than either $25 \%$ of the vertical reinforcement or $0.001 A_{c}$, whichever is greater.

The spacing between two adjacent horizontal bars should not be greater than 400 mm .

### 15.6.3 Transverse reinforcement

In any part of a wall where the total area of the vertical reinforcement in the two faces exceeds $0.02 A_{c}$, transverse reinforcement in the form of links should be provided in accordance with the rules for columns.

Where the main reinforcement is placed nearest to the wall faces, transverse reinforcement should also be provided in the form of links with at least 4 per $\mathrm{m}^{2}$ of wall area. Transverse reinforcement need not be provided where welded mesh and bars of diameter $\phi \leq 16 \mathrm{~mm}$ are used with concrete cover larger than $2 \phi$.

### 15.7 Pile caps

BS EN 1992-2 9.8.1 (103) \& NA

The distance from the outer edge of the pile to the edge of the pile cap should be such that the tie forces can be properly anchored. The expected deviation of the pile on site should be taken into account.

Reinforcement in a pile cap should be calculated either by using strut-and-tie or flexural methods as appropriate. The main tensile reinforcement to resist the action effects should be concentrated in stress zones between the tops of the piles. The minimum diameter of bars should be 12 mm .

Where the distance between the edge of a pile and a pier is less than $2 d$, some of the shear force in the pile cap will be transmitted directly between the pier and the pile via a strutting action. The basic punching perimeter cannot be constructed without encompassing a part of the support as shown for the $2 d$ perimeter in Figure 15.8. In such cases, it is recommended that the tension reinforcement is provided with a full anchorage beyond the line of the pile centres and that the shear design takes into consideration of the following in addition to other verifications required by BS EN 1992-2: 2005.

Flexural shear on plane passing across the full width of the pile cap. Flexural shear should be checked on planes passing across the full width of the pile cap, such as the flexural shear plane in Figure 15.8. Shear enhancement should be taken into account by an increase to the concrete resistance and not by a reduction in the shear force. Where the spacing of the pile centres is less than or equal to 3 pile diameters, the short shear span enhancement may be applied over the whole section. Where the spacing is greater than this, the enhancement may only be applied on strips of width 3 pile diameters centred on each pile. The shear span $\alpha_{v}$ should be taken as the distance between the face of the column or wall and the nearer edge of the piles plus $20 \%$ of the pile diameter.
■ Maximum permissible shear stress for punching. The maximum permissible shear stress at the face of the piles and piers should be checked in accordance with Section 8.6. The shear perimeter for corner piles should be the pile perimeter, or a perimeter passing partially around the pile and extending out to the free edges of the pile cap, whichever is less.

- Punching resistance of corner piles. Corner piles should be checked for punching resistance at a $2 d$ perimeter (without support enhancement) ignoring the presence of the pier or support and any vertical reinforcement within it.

Further guidance is given in Hendy \& Smith ${ }^{[20]}$.

PD 6687-2
fig. 6


### 15.8 Bored piles

Bored piles should have the minimum reinforcement shown in Table 15.2. A minimum of six longitudinal bars with diameter of at least 16 mm should be provided with a maximum spacing of 200 mm around the periphery of the pile. The detailing should comply with BS EN 1992-1-1 BS EN $1536^{[23]}$.

Table 15.2
Recommended minimum longitudinal reinforcement in cast-in-place bored piles

| Area of cross-section of the pile $\left(\boldsymbol{A}_{\boldsymbol{c}}\right)$ | $\boldsymbol{A}_{\mathbf{c}} \leq \mathbf{0 . 5} \mathbf{m}^{\mathbf{2}}$ | $\mathbf{0 . 5} \mathbf{m}^{\mathbf{2}} \leq \mathbf{1 . 0} \mathbf{m}^{\mathbf{2}}$ | $\boldsymbol{A}_{\boldsymbol{c}}>\mathbf{1 . 0} \mathbf{m}^{\mathbf{2}}$ |
| :--- | :--- | :--- | :--- |
| Minimum area of longitudinal <br> reinforcement $\left(\boldsymbol{A}_{\mathbf{s}, \mathrm{bpmin}}\right)$ | $\geq 0.005 A_{c}$ | $\geq 25 \mathrm{~cm}^{2}$ | $\geq 0.0025 A_{c}$ |

BS EN 1992-1-1 table 9.6.N

### 15.9 Requirements for voided slabs

> PD 6687-2 gives the following guidance for the design of voided slab bridge decks cast in situ.

### 15.9.1 Transverse shear

The effects of cell distortion due to transverse shear should be considered. In particular:

- The increased stresses in the transverse reinforcement and shear links due to cell distortion resulting from transverse shear should be calculated by an appropriate analysis (e.g. an analysis based on the assumption that the transverse action acts in a manner similar to a Vierendeel frame).
- The resistance of the flanges and webs to the local moments produced by the transverse shear effects should be verified.

The top and bottom flanges should be designed as solid slabs, each to carry a part of the global transverse shear force proportional to the flange thickness.

### 15.9.2 Longitudinal shear

The longitudinal ribs between the voids should be designed as beams to resist the shear forces in the longitudinal direction, including any shear due to torsional effects.

### 15.9.3 Punching

Punching of wheel loads through the top flange of decks with circular voids will generally need to be considered for unusually thin flanges, typically those with void diameter to slab depth ratios of greater than 0.75 .

### 15.9.4 Transverse reinforcement

In the absence of a detailed analysis, the minimum transverse reinforcement provided should be as follows:

```
PD 6687-2
10.5.2
```

```
PD 6687-2
10.5.3
```

10.5.4

[^2]The spacing of the transverse reinforcement should not exceed twice the minimum flange thickness.

In skew voided slabs, it is preferable for the transverse steel to be placed perpendicular to the voids and the longitudinal steel to be placed parallel to the voids.

### 15.10 Prestressing

### 15.10.1 Arrangement of pre-tensioned tendons

BS EN 1992-1-1
8.10.1.3 (3)

PD 6687-2
9.2

The minimum clear horizontal and vertical spacing of individual pre-tensioned tendons should be in accordance with that shown in Figure 15.9.


Figure 15.9
Minimum clear spacing between pre-tensioned tendons

### 15.10.2 Arrangement of post-tensioned ducts

The minimum clear spacing of between ducts should be in accordance with that shown in Figure 15.10.


#### Abstract

In the absence of the provision of reinforcement between ducts to prevent splitting of the concrete, designed in accordance with the strut and tie rules (see Section 10), the minimum centre to centre duct spacings should be as given in Table 15.3. These spacings are given in BS 5400-4: 1990[24].




Figure 15.10
Minimum clear spacing between post-tensioned ducts

Table 15.3
Minimum spacing of post-tensioning ducts (mm)

| Radius of curvature of duct (m) | Duct internal diameter (mm) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 19 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 |
|  | Tendon force (kN) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 296 | 387 | 960 | 1337 | 1920 | 2640 | 3360 | 4320 | 5183 | 6019 | 7200 | 8640 | 9424 | 10336 | 11248 | 13200 |
| 2 | 110 | 140 | 350 | 485 | 700 | 960 |  |  |  |  |  |  |  |  |  |  |
| 4 | 55 | 70 | 175 | 245 | 350 | 480 | 610 | 785 | 940 |  |  |  |  | Radii not normally used |  |  |
| 6 | 38 | 60 | 120 | 165 | 235 | 320 | 410 | 525 | 630 | 730 | 870 | 1045 |  |  |  |  |
| 8 |  |  | 90 | 125 | 175 | 240 | 305 | 395 | 470 | 545 | 655 | 785 | 855 | 940 |  |  |
| 10 |  |  | 80 | 100 | 140 | 195 | 245 | 315 | 375 | 440 | 525 | 630 | 685 | 750 | 815 |  |
| 12 |  |  |  |  |  | 160 | 205 | 265 | 315 | 365 | 435 | 525 | 570 | 625 | 680 | 800 |
| 14 |  |  |  |  |  | 140 | 175 | 225 | 270 | 315 | 375 | 450 | 490 | 535 | 585 | 785 |
| 16 |  |  |  |  |  |  | 160 | 195 | 235 | 275 | 330 | 395 | 430 | 470 | 510 | 600 |
| 18 |  |  |  |  |  |  |  | 180 | 210 | 245 | 290 | 350 | 380 | 420 | 455 | 535 |
| 20 |  |  |  |  |  |  |  |  | 200 | 220 | 265 | 315 | 345 | 375 | 410 | 480 |
| 22 |  |  |  |  |  |  |  |  |  |  | 240 | 285 | 310 | 340 | 370 | 435 |
| 24 |  |  |  |  |  |  |  |  |  |  |  | 265 | 285 | 315 | 340 | 400 |
| 26 |  |  |  |  |  |  |  |  |  |  |  | 260 | 280 | 300 | 320 | 370 |
| 28 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 345 |
| 30 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 340 |
| 40 | 38 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 | 320 | 340 |
| Notes <br> 1 The tendon <br> 2 Values less | force s <br> than 2 | wn is duct | max <br> ternal | um nor ameter | mally av are not | ilable for included | the giv | size of | duct (ta | ken as | \% of t | e chara | ristic | rength of | the ten | don). |

### 15.11 Connections

### 15.11.1 Connections transmitting compression

Connections without bedding material (dry connections) should only be used where an

BS EN 1992-1-1 10.9.4.3(3) exceed $0.3 f_{c d}$ where
$f_{c d}=0.85 f_{c k} / 1.5$
In the absence of other specifications the following value can be used for the bearing strength of other connections
$f_{\text {Rd }}=f_{\text {bed }} \leq 0.85 f_{\mathrm{cd}}$
where
$f_{c d}=$ lower of the design strengths for supported and supporting member

$$
=0.85 f_{c k} / 1.5
$$

$f_{\text {bed }}=$ design strength of the bedding material

### 15.12 Bearings

BS EN 1992-1-1
10.9.5.1(4)

BS EN 1992-1-1 10.9.5.2(1)

BS EN 1992-1-1
10.9.4.7(1)

Bearings shall be designed and detailed to ensure correct positioning taking into account the production and assembling deviations.

The nominal length, $a$, of a simple bearing as shown in Figure 15.11 may be calculated as:
$a=a_{1}+a_{2}+a_{3}+\sqrt{\Delta a_{2}^{2}+\Delta a_{3}{ }^{2}}$
where
$a_{1}=$ net bearing length with regard to bearing stress $a_{1}=F_{E d} /\left(b_{1} f_{\mathrm{Rd}}\right)$ but not less than minimum values in Table 15.4
$F_{\text {Ed }}=$ design value of support reaction
$b_{1}=$ net bearing width (see below)
$f_{\mathrm{Rd}}=$ design value of bearing strength (see Section 15.11.1)
$a_{2}=$ distance assumed ineffective beyond outer end of supporting member, see Figure 15.11 and Table 15.5
$a_{3}=$ similar distance for supported member, see Figure15.11 and Table 15.6
$\Delta a_{2}=$ allowance for deviations for the distance between supporting members, see Table 15.7
$\Delta a_{3}=$ allowance for deviations for the length of supporting member
$=I_{n} / 2500$
$I_{\mathrm{n}}=$ length of member
The effective bearing length $a_{1}$ is controlled by a distance, $d$, (see Figure 15.12) from the edge of the respective elements
where
$d_{\mathrm{i}}=c_{\mathrm{i}}+\Delta a_{\mathrm{i}}$ with horizontal loops or otherwise end-anchored bars
$d_{\mathrm{i}}=c_{\mathrm{i}}+\Delta \mathrm{a}_{\mathrm{i}}+r_{\mathrm{i}}$ with vertically bent bars
where
$c_{i}=$ concrete cover
$\Delta a_{i}=$ deviation
$r_{i}=$ bend radius

If measures are taken to obtain a uniform distribution of the bearing pressure, e.g. with mortar, neoprene or similar pads, the design bearing width $b_{1}$ may be taken as the actual width of the bearing. Otherwise, and in the absence of a more accurate analysis, $b_{1}$ should not be greater than to 600 mm .


Figure 15.11
Example of bearing with definitions


Table 15.5
Distance $a_{2}(\mathrm{~mm})$ assumed ineffective from outer end of supporting member

| Support material and type | Relative bearing stress, $\sigma_{\mathrm{Ed}} / \mathrm{f}_{\mathrm{cd}}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | $\leq 0.15$ | 0.15-0.4 | >0.4 |
| Steel | $\begin{aligned} & 0 \\ & 5 \end{aligned}$ | $\begin{gathered} 0 \\ 10 \end{gathered}$ | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ |
| Reinforced concrete $\geq$ C30 $\quad$ line | $\begin{array}{r} 0 \\ 10 \end{array}$ | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 15 \\ & 25 \end{aligned}$ |
| Plain concrete and reinforced concrete < C30 line concentrated | $\begin{aligned} & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & 15 \\ & 25 \end{aligned}$ | $\begin{aligned} & 25 \\ & 35 \end{aligned}$ |
| Brickwork | $\begin{aligned} & 10 \\ & 20 \end{aligned}$ | $\begin{aligned} & 15 \\ & 25 \end{aligned}$ | a <br> a |
| Key <br> a Concrete padstone should be used in these cases |  |  |  |

Table 15.6
Distance $a_{3}(\mathrm{~mm})$ assumed ineffective beyond outer end of supported member

| Detailing of reinforcement | Support |  |
| :--- | :--- | :--- |
|  | Line | Concentrated |
| Continuous bars over support (restrained or not) | 0 | 0 |
| Straight bars, horizontal, close to end of member | 5 | 15, but not less than end cover |
| Tendons or straight bars exposed at end of <br> member | 5 | 15 |
| Vertical loop reinforcement | 15 | End cover + inner radius of bending |

[^3]Table 15.7
Allowance $\Delta a_{2}$ for tolerances for the clear distance between the faces of the supports

BS EN 1992-1-1
table 10.5

| Support material | $\Delta \boldsymbol{a}_{\mathbf{2}}$ |
| :--- | :--- |
| Steel or precast concrete | $10 \leq l / 1200 \leq 30 \mathrm{~mm}$ |
| Brickwork or cast in-situ concrete | $15 \leq l / 1200+5 \leq 40 \mathrm{~mm}$ |
| Note <br> $l=$ span length |  |

## 16 Design for the execution stages

> For bridges built in stages, account of the construction procedure should be considered at serviceability and ultimate limit states.

Serviceability criteria for the completed structure need not be applied to intermediate execution stages, provided that durability and final appearance of the completed structure are not affected (e.g. deformations). Even for bridges or elements of bridges in which the limit-state of decompression is checked under the quasi-permanent or frequent combination of actions on the completed structure, tensile stresses less than $1.0 f_{\text {ctm }}(t)$ under the quasi-permanent combination of actions during execution are permitted. For bridges or elements of bridges in which the limit-state of cracking is checked under frequent combination on the completed structure, the limit state of cracking should be verified under the quasi-permanent combination of actions during execution.

## 17 Design aids

The following text, tables and figures have been derived from Eurocode 2 and are provided as an aid to designers in the UK.

### 17.1 Design for bending

Determine whether $K \leq K^{\prime}$ or not (i.e. whether under-reinforced or not). where
$K=M_{\mathrm{Ed}} /\left(b d^{2} f_{\mathrm{ck}}\right)$
where
$d=$ effective depth $=h-$ cover $-\phi_{\text {link }}-\phi / 2$
$b=$ width of section
For rectangular sections $K^{\prime}$ may be determined from Table 17.1 or, for slabs only, Table 17.2 may be used. $K^{\prime}$ is dependent on the concrete strength and the redistribution ratio used.

For non-rectangular section $x / d$ limits given in Table 17.1 may be used.

- If $K \leq K^{\prime}$, section is under-reinforced.

For rectangular sections:
$A_{s 1}=M_{\text {Ed }} / f_{y d} z^{z}$
where
$A_{s 1}=$ area of tensile reinforcement
$M_{E d}=$ design moment
$f_{\mathrm{yd}}=f_{\mathrm{yk}} / \gamma_{\mathrm{S}}=500 / 1.15=434.8 \mathrm{MPa}$
$z=d\left[0.5+0.5(1-3.53 \mathrm{~K} / \eta)^{0.5}\right] \leq 0.95 d$
$\eta=$ factor defining effective strength
$=1.0-\left(f_{\mathrm{ck}}-50\right) / 200$ (see Table 6.1)
For flanged beams where $x<1.25 h_{f}$,
$A_{s 1}=M_{\text {Ed }} / f_{y d} z$
$x=$ depth to neutral axis
$h_{f}=$ thickness of flange
For flanged beams where $x \geq 1.25 h_{f}$, refer to How to design concrete structures using Eurocode 2: Beams ${ }^{[25]}$

- If $K>K^{\prime}$, section is over-reinforced and requires compression reinforcement.
$A_{\mathrm{s} 2}=\left(M_{\mathrm{Ed}}-M_{\mathrm{Ed}}^{\prime}\right) / f_{\mathrm{sc}}\left(d-d_{2}\right)$
where
$A_{\mathrm{s} 2}=$ compression reinforcement
$M_{E d}^{\prime 2}=K^{\prime} b d^{2} f_{c k}$
$f_{\text {sc }}=700\left(x_{u}-d_{2}\right) / x_{u} \leq f_{y d}$
where
$d_{2}=$ effective depth to compression reinforcement
$x_{u}=(\delta-\lambda / z) d$
$\delta=$ redistribution ratio
When $f_{y k}=500 \mathrm{MPa}, f_{\mathrm{sc}}=f_{\mathrm{yd}}$ unless $d_{2} / x_{\mathrm{u}} \geq 0.379$.
Total area of tension steel $A_{s 1}=M_{E d}^{\prime} /\left(f_{y d} z\right)+A_{s 2} f_{s c} / f_{y d}$

Table 17.1
Limiting values of $K^{\prime}$ and $x_{u} / d$

| Percentage redistribution | $\begin{array}{\|l\|} \hline \delta \\ \text { (Redistribution } \\ \text { ratio) } \\ \hline \end{array}$ | $f_{\text {ck }}$ | 50 | 55 | 60 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\eta$ | 1.000 | 0.975 | 0.950 | 0.900 |
|  |  | $\lambda$ | 0.800 | 0.788 | 0.775 | 0.750 |
|  |  | $\varepsilon_{\text {cu2 }}$ | 0.0035 | 0.0031 | 0.0029 | 0.0027 |
|  |  | $k_{1}$ or $k_{3}$ | 0.44 | 0.54 | 0.54 | 0.54 |
|  |  | $k_{2}=k_{4}$ | 1.251 | 1.310 | 1.357 | 1.409 |
| 0 | 1.00 | $K^{\prime}$ | 0.167 | 0.132 | 0.123 | 0.110 |
|  |  | $x_{u} / d$ | 0.448 | 0.351 | 0.339 | 0.326 |
| 5 | 0.95 | $K^{\prime}$ | 0.155 | 0.119 | 0.111 | 0.099 |
|  |  | $x_{u} / d$ | 0.408 | 0.313 | 0.302 | 0.291 |
| 10 | 0.90 | $K^{\prime}$ | 0.142 | 0.107 | 0.099 | 0.088 |
|  |  | $x_{u} / d$ | 0.368 | 0.275 | 0.265 | 0.256 |
| 15 | 0.85 | $K^{\prime}$ | 0.129 | 0.093 | 0.087 | 0.077 |
|  |  | $x_{u} / d$ | 0.328 | 0.237 | 0.228 | 0.220 |

Table 17.2
Limiting values of $K^{\prime}$ and $x_{u} / d$ for slabs

| Percentage redistribution | $\begin{array}{\|l} \hline \delta \\ \text { (Redistribution } \\ \text { ratio) } \end{array}$ | $f_{\text {ck }}$ | 50 | 55 | 60 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\eta$ | 1.000 | 0.975 | 0.950 | 0.900 |
|  |  | $\lambda$ | 0.800 | 0.788 | 0.775 | 0.750 |
|  |  | $\varepsilon_{\text {cu2 }}$ | 0.0035 | 0.0031 | 0.0029 | 0.0027 |
|  |  | $k_{1}$ or $k_{3}$ | 0.4 | 0.4 | 0.4 | 0.4 |
|  |  | $k_{2}=k_{4}$ | 1.000 | 1.048 | 1.086 | 1.127 |
| 0 | 1.00 | $K^{\prime}$ | 0.207 | 0.193 | 0.181 | 0.163 |
|  |  | $x_{u} / d$ | 0.600 | 0.573 | 0.553 | 0.532 |
| 5 | 0.95 | $K^{\prime}$ | 0.194 | 0.181 | 0.170 | 0.152 |
|  |  | $x_{u} / d$ | 0.550 | 0.525 | 0.507 | 0.488 |
| 10 | 0.90 | $K^{\prime}$ | 0.181 | 0.169 | 0.158 | 0.141 |
|  |  | $x_{u} / d$ | 0.500 | 0.477 | 0.461 | 0.444 |
| 15 | 0.85 | $K^{\prime}$ | 0.167 | 0.155 | 0.145 | 0.130 |
|  |  | $x_{u} / d$ | 0.450 | 0.429 | 0.415 | 0.399 |
| 20 | 0.80 | $K^{\prime}$ | 0.152 | 0.141 | 0.132 | 0.118 |
|  |  | $x_{u} / d$ | 0.400 | 0.382 | 0.368 | 0.355 |
| 25 | 0.75 | $K^{\prime}$ | 0.136 | 0.126 | 0.118 | 0.105 |
|  |  | $x_{u} / d$ | 0.350 | 0.334 | 0.322 | 0.311 |
| 30 | 0.70 | $K^{\prime}$ | 0.120 | 0.111 | 0.103 | 0.092 |
|  |  | $x_{u} / d$ | 0.300 | 0.286 | 0.276 | 0.266 |

### 17.2 Design for beam shear

### 17.2.1 Requirement for shear reinforcement

If $v_{\mathrm{Ed}}>v_{\mathrm{Rd}, \mathrm{c}}$ then shear reinforcement is required
where
$v_{\mathrm{Ed}}=V_{\mathrm{Ed}} / b_{\mathrm{w}} d$, for sections without shear reinforcement (i.e. slabs)
$v_{\mathrm{Rd}, \mathrm{c}}=$ shear resistance without shear reinforcement, from Table 17.3

Table 17.3
Shear resistance without shear reinforcement, $v_{R d, c}(\mathrm{MPa})$

| $\rho_{\mathrm{l}}=\boldsymbol{A}_{\mathrm{sl}} / b_{\mathrm{w}} \boldsymbol{d}$ | Effective depth d (mm) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\leq 200$ | 225 | 250 | 275 | 300 | 350 | 400 | 450 | 500 | 600 | 750 |
| 0.25\% | 0.54 | 0.52 | 0.50 | 0.48 | 0.47 | 0.45 | 0.43 | 0.41 | 0.40 | 0.38 | 0.36 |
| 0.50\% | 0.59 | 0.57 | 0.56 | 0.55 | 0.54 | 0.52 | 0.51 | 0.49 | 0.48 | 0.47 | 0.45 |
| 0.75\% | 0.68 | 0.66 | 0.64 | 0.63 | 0.62 | 0.59 | 0.58 | 0.56 | 0.55 | 0.53 | 0.51 |
| 1.00\% | 0.75 | 0.72 | 0.71 | 0.69 | 0.68 | 0.65 | 0.64 | 0.62 | 0.61 | 0.59 | 0.57 |
| 1.25\% | 0.80 | 0.78 | 0.76 | 0.74 | 0.73 | 0.71 | 0.69 | 0.67 | 0.66 | 0.63 | 0.61 |
| 1.50\% | 0.85 | 0.83 | 0.81 | 0.79 | 0.78 | 0.75 | 0.73 | 0.71 | 0.70 | 0.67 | 0.65 |
| 1.75\% | 0.90 | 0.87 | 0.85 | 0.83 | 0.82 | 0.79 | 0.77 | 0.75 | 0.73 | 0.71 | 0.68 |
| $\geq 2.00 \%$ | 0.94 | 0.91 | 0.89 | 0.87 | 0.85 | 0.82 | 0.80 | 0.78 | 0.77 | 0.74 | 0.71 |

## Notes

1 Table derived from BS EN 1992-1-1 and UK National Annex.
2 Table created for $f_{c k}=30 \mathrm{MPa}$ assuming vertical links.
3 For $\rho_{l} \geq 0.4 \%$ and $\quad f_{c k}=25 \mathrm{MPa}$, apply factor of $0.94 \quad f_{c k}=40 \mathrm{MPa}$, apply factor of $1.10 \quad f_{\mathrm{ck}} \geq 50 \mathrm{MPa}$, apply factor of 1.19
$f_{c k}=35 \mathrm{MPa}$, apply factor of $1.05 \quad f_{\mathrm{ck}}=45 \mathrm{MPa}$, apply factor of 1.14

Section 7.3.2

### 17.2.2 Section capacity check

If $v_{E d, z}>v_{\text {Rd,max }}$ then section size is inadequate
where
$v_{\mathrm{Ed}, \mathrm{z}}=V_{\mathrm{Ed}} / b_{\mathrm{w}} Z=V_{\mathrm{Ed}} / b_{\mathrm{w}} 0.9 d$, for sections with shear reinforcement
$V_{\text {Rd,max }}=$ capacity of concrete struts expressed as a stress in the vertical plane
$=V_{R d, \max } / b_{w^{Z}}$
$=V_{R d, \max } / b_{w} 0.9 d$
$V_{\text {Rd, max }}$ can be determined from Table 17.4, initially checking at $\cot \theta=2.5$. Should it be required, a greater resistance may be assumed by using a larger strut angle, $\boldsymbol{\theta}$.

### 17.2.3 Shear reinforcement design

$A_{\mathrm{sw}} / \mathrm{s} \geq \mathrm{v}_{\mathrm{Ed}, \mathrm{z}} b_{\mathrm{w}} / f_{\mathrm{ywd}} \cot \theta$
where
$A_{\text {sw }}=$ area of shear reinforcement (vertical links assumed)
$s=$ spacing of shear reinforcement
$v_{\mathrm{Ed}, \mathrm{z}}=V_{\mathrm{Ed}} / b_{\mathrm{w}} \mathrm{Z}$, as before
$b_{w}=$ breadth of the web
$f_{\text {ywd }}=f_{\text {ywk }} / \gamma_{\mathrm{S}}=$ design yield strength of shear reinforcement
Alternatively, $A_{\text {sw }} / s$ per metre width of $b_{w}$ may be determined from Figure 17.1a) or 17.1b) as indicated by the blue arrows in Figure 17.1a). These figures may also be used to estimate the value of $\cot \theta$.

Beams are subject to a minimum shear link provision. Assuming vertical links,
$A_{\text {sw, min }} / s b_{w} \geq 0.08 f_{c k}^{0.5} / f_{\text {yk }}$ (see Table 17.5 ).

Table 17.4
Capacity of concrete struts expressed as a stress, $v_{\text {Rd,max }}$, where $z=0.9 \mathrm{~d}$

| $f_{c k}$ |  | $v_{\text {Rd,max }}(\mathrm{MPa})$ |  |  |  |  |  | $v$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\cot \theta$ | 2.50 | 2.14 | 1.73 | 1.43 | 1.19 | 1.00 |  |
|  | $\theta$ | $21.8^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $35^{\circ}$ | $40^{\circ}$ | $45^{\circ}$ |  |
| 25 |  | 3.10 | 3.45 | 3.90 | 4.23 | 4.43 | 4.50 | 0.540 |
| 30 |  | 3.64 | 4.04 | 4.57 | 4.96 | 5.20 | 5.28 | 0.528 |
| 35 |  | 4.15 | 4.61 | 5.21 | 5.66 | 5.93 | 6.02 | 0.516 |
| 40 |  | 4.63 | 5.15 | 5.82 | 6.31 | 6.62 | 6.72 | 0.504 |
| 45 |  | 5.09 | 5.65 | 6.39 | 6.93 | 7.27 | 7.38 | 0.492 |
| $\geq 50$ |  | 5.52 | 6.13 | 6.93 | 7.52 | 7.88 | 8.00 | 0.480 |

## Notes

1 Table derived from BS EN 1992-1-1 and UK National Annex assuming vertical links, i.e. cot $\alpha=0$
$2 \boldsymbol{v}=0.6\left[1-\left(f_{c k} / 250\right)\right]$
Section 15.2.6
$\mathbf{3} v_{\mathrm{Rd}, \text { max }}=v f_{\mathrm{cd}}(\cot \theta+\cot \alpha) /\left(1+\cot ^{2} \theta\right)$

Table 17.5
Values of $A_{\text {sw,min }} / s b_{w} \times 10^{3}$ for beams for vertical links and $f_{\mathrm{yk}}=500 \mathrm{MPa}$

| Concrete class | C20/25 | C25/30 | C30/37 | C35/45 | C40/50 | C45/55 | $\geq$ C50/60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{\text {sw, } \min } / s b_{w} \times 10^{3}$ | 0.72 | 0.80 | 0.88 | 0.95 | 1.01 | 1.07 | 1.13 |



Figure 17.1a)
Diagram to determine $\boldsymbol{A}_{\text {sw }} / s$ required (for beams with high shear stress)


Figure 17.1b)
Diagram to determine $A_{\text {sw }} / s$ required (for slabs and beams with low shear stress)

### 17.3 Design for punching shear

Section 8.5

Section 15.4.3

Determine if punching shear reinforcement is required, initially at $u_{1}$, then if necessary at subsequent perimeters, $u_{\mathrm{i}}$.
If $v_{\mathrm{Ed}}>v_{\mathrm{Rd}, \mathrm{c}}$ then punching shear reinforcement is required
where

$$
v_{\mathrm{Ed}}=\beta V_{\mathrm{Ed}} / u_{i} d
$$

where
$\beta=$ factor dealing with eccentricity (see Section 8.2)
$V_{\mathrm{Ed}}=$ design value of applied shear force
$u_{i}=$ length of the perimeter under consideration (see Sections 8.3, 8.7 and 15.4.3)
d $=$ mean effective depth
$v_{\text {Rd, }, ~}=$ shear resistance without shear reinforcement (see Table 17.3)
For vertical shear reinforcement
$\left(A_{\text {sw }} / s_{\mathrm{r}}\right)=u_{1}\left(v_{\text {Ed }}-0.75 v_{\text {Rd, },}\right) /\left(1.5 f_{\text {ywd }, \text { ef }}\right)$
where
$\begin{aligned} A_{s w}= & \begin{array}{l}\text { area of shear reinforcement in one perimeter around the column. } \\ \\ \\ \text { For } A_{s w, m i n} \text { see Section 15.4.3 }\end{array} \\ S_{r}= & \text { radial spacing of perimeters of shear reinforcement } \\ u_{1}= & \text { basic control perimeter (see Figures } 8.3 \text { and } 8.4) \\ f_{y w d, e f}= & \text { effective design strength of reinforcement }=(250+0.25 d) \leq f_{\text {ywd }} \text {. For Class } 500 \\ & \text { shear reinforcement see Table } 17.6\end{aligned}$

Table 17.6
Values of $f_{\text {ywd , ef }}$ for Class 500 reinforcement

| $\boldsymbol{d}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{2 5 0}$ | $\mathbf{3 0 0}$ | $\mathbf{3 5 0}$ | $\mathbf{4 0 0}$ | $\mathbf{4 5 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{\text {ywd,ef }}$ | 287.5 | 300 | 312.5 | 325 | 337.5 | 350 | 362.5 |

### 17.4 Design for axial load and bending

### 17.4.1 General

In columns, design moments $M_{E d}$ and design applied axial force $N_{E d}$ should be derived from analysis, consideration of imperfections and, where necessary, 2nd order effects (see Section 5.6).

### 17.4.2 Design by calculation

Assuming two layers of reinforcement, $A_{51}$ and $A_{s 2}$, the total area of steel required in a column, $A_{s^{\prime}}$ may be calculated as shown below.

- For axial load
$A_{\mathrm{sN}} / 2=\left(N_{\mathrm{Ed}}-\alpha_{\mathrm{cc}} \eta f_{\mathrm{ck}} b d_{\mathrm{c}} / \gamma_{\mathrm{C}}\right) /\left(\sigma_{\mathrm{sc}}-\sigma_{\mathrm{st}}\right)$
where
$A_{S N}=$ total area of reinforcement required to resist axial load using this method.
$A_{\mathrm{s} \mathrm{N}}=A_{\mathrm{s} 1}+A_{\mathrm{s} 2}$ and $A_{\mathrm{s} 1}=A_{\mathrm{s} 2}$
where
$A_{\mathrm{s} 1}\left(A_{\mathrm{s} 2}\right)=$ area of reinforcement in layer 1 (layer 2) (see Figure 6.3)
$N_{E d}=$ design value of axial force
$\alpha_{c \mathrm{cc}}=0.85$
$\eta=1$ for $\leq \mathrm{C} 50 / 60$ (see Table 6.1 when $f_{c k}>50$ )
$b=$ breadth of section
$d_{c}=$ effective depth of concrete in compression $=\lambda x \leq h$
where
$\lambda=0.8$ for $\leq \mathrm{C} 50 / 60$ (see Table 6.1 when $f_{\mathrm{ck}}>50$ )
$x=$ depth to neutral axis
$h=$ height of section
$\gamma_{C}=1.5$
$\sigma_{\mathrm{sc}}\left(\sigma_{\mathrm{st}}\right)=$ stress in compression (and tension) reinforcement
For moment
$\frac{A_{s M}}{2}=\frac{M_{E d}-\alpha_{c c} \eta f_{c k} b d_{c}\left(h / 2-d_{c} / 2\right) / \gamma_{C}}{\left(h / 2-d_{2}\right)\left(\sigma_{\mathrm{sc}}+\sigma_{\mathrm{st}}\right)}$
where
$A_{S M}=$ total area of reinforcement required to resist moment using this method
$A_{s M}=A_{s 1}+A_{s 2}$ and $A_{s 1}=A_{s 2}$
Solution: iterate $x$ such that $A_{S N}=A_{S M}$.


### 17.4.3 Column charts

Alternatively $A_{s}$ may be estimated from column charts.
Figures 17.2 a ) to e) give non-dimensional design charts for symmetrically reinforced rectangular columns where reinforcement is assumed to be concentrated in the corners.

In these charts:
$\alpha_{c \mathrm{C}}=0.85$
$f_{\mathrm{ck}} \leq 50 \mathrm{MPa}$
Simplified stress block assumed.
$A_{s}=$ total area of reinforcement required
$=\left(A_{s} f_{y k} / b h f_{c k}\right) b h f_{c k} / f_{y k}$ where
$\left(A_{s} f_{y k} / b h f_{c k}\right)$ is derived from the appropriate design chart interpolating as necessary between charts for the value of $d_{2} / h$ for the section

Where reinforcement is not concentrated in the corners, a conservative approach is to calculate an effective value of $d_{2}$ as illustrated in Figures 17a) to e). $d_{2}=$ effective depth to steel in layer 2.


Figure 17.2a)
Rectangular columns $\left(f_{c k} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=500 \mathrm{MPa}\right) d_{2} / h=0.05$


Figure 17.2b)
Rectangular columns $\left(f_{c k} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=\mathbf{5 0 0} \mathrm{MPa}\right) d_{2} / h=0.10$


Figure 17.2c)
Rectangular columns $\left(f_{\mathrm{ck}} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=500 \mathrm{MPa}\right) d_{2} / h=0.15$


Figure 17.2d)
Rectangular columns $\left(f_{\mathrm{ck}} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=\mathbf{5 0 0} \mathrm{MPa}\right) d_{\mathbf{2}} / h=0.20$


Figure 17.2e)
Rectangular columns $\left(f_{c k} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=500 \mathrm{MPa}\right) d_{2} / h=0.25$


Figure 17.3a)
Rectangular columns $\left(f_{c k} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=500 \mathrm{MPa}\right) d_{2} / h=0.6$


Figure 17.3b)
Rectangular columns $\left(f_{c k} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=500 \mathrm{MPa}\right) d_{2} / h=0.7$


Figure 17.3c)
Rectangular columns $\left(f_{c k} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=500 \mathrm{MPa}\right) d_{2} / h=0.8$


Figure 17.3d)
Rectangular columns $\left(f_{c k} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=500 \mathrm{MPa}\right) d_{2} / h=0.85$


Figure 17.3e)
Rectangular columns ( $f_{\mathrm{ck}} \leq 50 \mathrm{MPa}, f_{\mathrm{yk}}=\mathbf{5 0 0} \mathrm{MPa}$ ) $d_{2} / h=0.9$

## 18 References

1 BRITISH STANDARDS INSTITUTION. BS EN 1992-1-1, Eurocode 2 - Design of concrete structures Part 1-1: General rules and rules for buildings. BSI, 2004, incorporating corrigendum dated 12-11-2007.
1a National Annex to Eurocode 2 - Part 1-1. BSI, 2005.
2 BRITISH STANDARDS INSTITUTION. BS EN 1992-2, Eurocode 2 - Design of concrete structures Part 2: Concrete bridges - Design and detailing rules. BSI, 2005, incorporating corrigendum dated 12-11-2007.
2a National Annex to Eurocode 2 - Part 2. BSI, 2007.
3 BRITISH STANDARDS INSTITUTION. PD 6687-2 Recommendations for the design of structures to BS EN 1992-2: 2005. BSI, 2008.

4 WOOD, R H. The reinforcement of slabs in accordance with a pre-determined field of moments. Concrete, 1968, No. 2, pp. 69-76.

5 DENTON, S R \& BURGOYNE, C J. The assessment of reinforced concrete slabs. The Structural Engineer, 7th May 1996, Vol. 74, No. 9, pp.147-152.
6 BRITISH STANDARDS INSTITUTION. PD 6687 Background paper to the UK National Annexes BS EN 1992-1. BSI, 2006.

7 BRITISH STANDARDS INSTITUTION. BS EN 1990, Eurocode: Basis of structural design. BSI, 2002, incorporating amendment No. 1.
7a National Annex to Eurocode. BSI, 2004, incorporating amendment No. 1.
8 BRITISH STANDARDS INSTITUTION. BS 8500-1: Concrete - Complementary British Standard to BS EN 206-1 - Part 1: Method of specifying and guidance to the specifier. BSI, 2006.

9 BRITISH STANDARDS INSTITUTION. BS EN 1991, Eurocode 1: Actions on structures (10 parts). BSI, 2002-2006.
9a National Annexes to Eurocode 1. BSI, 2005-2009 and in preparation.
10 BRITISH STANDARDS INSTITUTION. ENV 13670-1: 2008: Execution of concrete structures: Common. BSI, 2000.

11 BRITISH STANDARDS INSTITUTION. BS EN 13670. Execution of concrete structures. BSI, due 2009.

12 BRITISH STANDARDS INSTITUTION. BS EN 1997, Eurocode 7: Geotechnical design Part 1. General rules. BSI, 2004.
12a National Annex to Eurocode 7 - Part 1. BSI, 2007.
13 BRITISH STANDARDS INSTITUTION. PD 6694-1 Recommendations for the design of structures subject to traffic loading to BS EN 1997-1:2004. BSI, due 2009.
14 BRITISH STANDARDS INSTITUTION. BS EN 206-1. Concrete - Part 1: Specification, performance, production and conformity. BSI, 2000.

15 BRITISH STANDARDS INSTITUTION. BS EN 197-1 Cement - Composition, specifications and conformity criteria for common cements. BSI, 2000.

16 BRITISH STANDARDS INSTITUTION. BS 4449: Steel for the reinforcement of concrete Weldable reinforcing steel - Bar, coil and decoiled product - Specification. BSI, 2005.

17 BRITISH STANDARDS INSTITUTION. BS EN 10080: Steel for the reinforcement of concrete Weldable reinforcing steel - General. BSI, 2005.
18 BRITISH STANDARDS INSTITUTION. BS 5896. High tensile steel wire and strand for the prestressing of concrete. BSI, 1980, incorporating amendment No. 1.

19 BUILDING RESEARCH ESTABLISHMENT. Concrete in aggressive ground. BRE Special Digest 1. BRE, 2005.

20 HENDY, C R \& SMITH, D A. Designers guide to EN 1992-2. Thomas Telford, 2007.
21 ENV 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. BSI, 1992 (superseded by reference 1).

22 INTERNATIONAL STANDARDS ORGANISATION, ISO/FDIS. 17660-2: Welding - Welding of reinforcing steel - Part 2: Non load-bearing welded joints. ISO, 2005.
23 BRITISH STANDARDS INSTITUTION. BS EN 1536: Execution of special geotechncial work Bored piles. BSI, 2000.

24 BRITISH STANDARDS INSTITUTION. BS 5400: Steel, concrete and composite bridges - Part 4: Code of Practice for design of concrete bridges. BSI, 1990.
25 BROOKER, O et al. How to design concrete structures using Eurocode 2. The Concrete Centre, 2006.

## Guide to presentation

| Grey shaded text, tables and figures | Modified Eurocode 2 text and additional text, derived formulae, tables and illustrations not from Eurocode 2 |
| :---: | :---: |
| Yellow shaded text, tables and figures | Additional text from PD 6687 ${ }^{[6]}$ or PD 6687-2 ${ }^{[3]}$ |
| $\begin{aligned} & \text { BS EN 1992-1-1 } \\ & \text { 6.4.4 } \end{aligned}$ | Relevant code and clauses or figure numbers |
| $\begin{aligned} & \text { BS EN 1992-1-1 } \\ & \text { NA } \end{aligned}$ | From the relevant UK National Annex |
| $\begin{aligned} & \text { BS EN 1992-1-1 } \\ & \text { 6.4.4 \& NA } \end{aligned}$ | From both Eurocode 2-1-1 and UK National Annex |
| Section 5.2 | Relevant parts of this publication |
| 1.0 | Nationally Determined Parameter. UK values have been used throughout |

## Concise Eurocode 2 for Bridges

This publication summarises the material that will be commonly used in the design of reinforced and prestressed concrete bridges using Eurocode 2.

With extensive clause referencing, readers are guided through Eurocode 2, other relevant European standards and noncontradictory complementary information. The publication, which includes design aids, aims to help designers with the transition to design using Eurocodes.

Concise Eurocode 2 for Bridges is part of a range of resources available from the cement and concrete industry to assist engineers with the design of a variety of concrete bridges. For more information visit www.concretecentre.com

Owen Brooker is senior structural engineer for The Concrete Centre. He is author of several publications, including the well received series How to design concrete structures using Eurocode 2. He regularly lectures and provides training to structural engineers, particularly on the application of Eurocode 2.

Paul Jackson is a technical director of Gifford, which he joined from BCA in 1988. He has worked on bridge design, assessment, construction, strengthening and research. He has contributed extensively to codes of practice and is currently a member of the BSI committee for bridges and convenor of its working group for concrete bridges. He served on the project team for EN 1992-2.

Stephen Salim is a senior engineer with Gifford. He has worked on bridge assessment, feasibility studies, design, construction supervision and research. He was also involved in the calibration work of BS EN 1992-2; some of the proposals arising from this work were adopted in the UK National Annex.

CCIP-038
Published 2009
ISBN 978-1-904818-82-3
Price Group P
© MPA - The Concrete Centre
Riverside House, 4 Meadows Business Park, Station Approach, Blackwater, Camberley, Surrey, GU17 9AB
Tel: +44 (0)1276606800 Fax: +44 (0) 1276606801
www.concretecentre.com


[^0]:    Corbels are short cantilevers projecting from columns or walls with the ratio of shear span (i.e. the distance between the face of the applied load and the face of the support) to the depth of the corbel in the range 0.5 to 2.0.

[^1]:    PD 6687
    fig. 34

[^2]:    ■ In the predominantly tensile flange either $1500 \mathrm{~mm}^{2} / \mathrm{m}$ or $1 \%$ of the minimum flange section, whichever is the lesser.
    ■ In the predominantly compressive flange either $1000 \mathrm{~mm}^{2} / \mathrm{m}$ or $0.7 \%$ of the minimum flange section, whichever is the lesser.

[^3]:    BS EN 1992-1-1 table 10.4

